Browse > Article
http://dx.doi.org/10.1016/j.jgr.2019.06.004

Till 2018: a survey of biomolecular sequences in genus Panax  

Boopathi, Vinothini (Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University)
Subramaniyam, Sathiyamoorthy (Research and Development Center, Insilicogen Inc.)
Mathiyalagan, Ramya (Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University)
Yang, Deok-Chun (Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University)
Publication Information
Journal of Ginseng Research / v.44, no.1, 2020 , pp. 33-43 More about this Journal
Abstract
Ginseng is popularly known to be the king of ancient medicines and is used widely in most of the traditional medicinal compositions due to its various pharmaceutical properties. Numerous studies are being focused on this plant's curative effects to discover their potential health benefits in most human diseases, including cancer- the most life-threatening disease worldwide. Modern pharmacological research has focused mainly on ginsenosides, the major bioactive compounds of ginseng, because of their multiple therapeutic applications. Various issues on ginseng plant development, physiological processes, and agricultural issues have also been studied widely through state-of-the-art, high-throughput sequencing technologies. Since the beginning of the 21st century, the number of publications on ginseng has rapidly increased, with a recent count of more than 6,000 articles and reviews focusing notably on ginseng. Owing to the implementation of various technologies and continuous efforts, the ginseng plant genomes have been decoded effectively in recent years. Therefore, this review focuses mainly on the cellular biomolecular sequences in ginseng plants from the perspective of the central molecular dogma, with an emphasis on genomes, transcriptomes, and proteomes, together with a few other related studies.
Keywords
EST; genome; next-generation sequencing; Panax species; transcriptome;
Citations & Related Records
Times Cited By KSCI : 11  (Citation Analysis)
연도 인용수 순위
1 Li M, Wang X, Zhang C, Wang H, Shi F, Xiao H, Li L-F. A Simple Strategy for Development of Single Nucleotide Polymorphisms from Non-Model Species and Its Application in Panax. International Journal of Molecular Sciences 2013;14(12):24581.   DOI
2 Wen J, Zimmer EA. Phylogeny and biogeography of Panax L. (the ginseng genus, Araliaceae): inferences from ITS sequences of nuclear ribosomal DNA. Molecular Phylogenetics and Evolution 1996;6(2):167-77.   DOI
3 Hong CP, Lee SJ, Park JY, Plaha P, Park YS, Lee YK, Choi JE, Kim KY, Lee JH, Lee J, et al. Construction of a BAC library of Korean ginseng and initial analysis of BAC-end sequences. Molecular Genetics and Genomics 2004;271(6):709-16.   DOI
4 Obae S, West T. Nuclear DNA content and genome size of American Ginseng2012. 4719-4723 p.
5 Kim K, Nguyen VB, Dong J, Wang Y, Park JY, Lee S-C, Yang TJ. Evolution of the Araliaceae family inferred from complete chloroplast genomes and 45S nrDNAs of 10 Panax-related species. Scientific Reports 2017;7:4917.   DOI
6 Jang W, Kim N, Lee J, Waminal NE, Lee S, Jayakodi M, Choi HI, Park JY, Lee JE, Yang TJ. A glimpse of Panax ginseng genome structure revealed from ten BAC clone sequences obtained by SMRT sequencing platform. Plant Breeding and Biotechnology 2017;5(1):25-35.   DOI
7 Kim N-H, Jayakodi M, Lee S-C, Choi B-S, Jang W, Lee J, Kim HH, Waminal NE, Lakshmanan M, van Nguyen B, et al. Genome and evolution of the shaderequiring medicinal herb Panax ginseng. Plant Biotechnology Journal 2018;0(0).
8 Xu J, Chu Y, Liao B, Xiao S, Yin Q, Bai R, Su H, Dong L, Li X, Qian J, et al. Panax ginseng genome examination for ginsenoside biosynthesis. GigaScience 2017;6(11):1-15.
9 Zhang D, Li W, Xia EH, Zhang QJ, Liu Y, Zhang Y, Tong Y, Zhao Y, Niu YC, Xu JH, et al. The medicinal herb Panax notoginseng genome provides insights into ginsenoside biosynthesis and genome evolution. Mol Plant 2017;10(6):903-7.   DOI
10 Jayakodi M, Lee S-C, Park H-S, Jang W, Lee YS, Choi B-S, Nah GJ, Kim DS, Natesan S, Sun C, et al. Transcriptome profiling and comparative analysis of Panax ginseng adventitious roots. Journal of Ginseng Research 2014;38(4):278-88.   DOI
11 Jo I-H, Lee J, Hong CE, Lee DJ, Bae W, Park S-G, Ahn YJ, Kim YC, Kim JU, Lee JW, et al. Isoform Sequencing provides a more comprehensive view of the Panax ginseng transcriptome. Genes 2017;8(9):228.   DOI
12 Jayakodi M, Choi B-S, Lee S-C, Kim N-H, Park JY, Jang W, Lakshmanan M, Mohan SVG, Lee DY, Yang TJ. Ginseng genome database: an open-access platform for genomics of Panax ginseng. BMC Plant Biology 2018;18(1):62.   DOI
13 Jayakodi M, Lee S-C, Yang T-J. Comparative transcriptome analysis of heat stress responsiveness between two contrasting ginseng cultivars. Journal of Ginseng Research 2019;43(4):572-9.   DOI
14 Li M-R, Shi F-X, Li Y-L, Jiang P, Jiao L, Liu B, Li LF. Genome-Wide Variation Patterns Uncover the Origin and Selection in Cultivated Ginseng (Panax ginseng Meyer). Genome Biology and Evolution 2017;9(9):2159-69.   DOI
15 Fan G, Fu Y, Yang B, Liu M, Zhang H, Liang X, Shi C, Ma K, Wang J, Liu W, et al. Sequencing of Panax notoginseng genome reveals genes involved in disease resistance and ginsenoside biosynthesis. bioRxiv; 2018.
16 Luo H, Sun C, Sun Y, Wu Q, Li Y, Song J, Niu Y, Cheng X, Xu H, Li C, et al. Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponin-biosynthetic genes and genetic markers. BMC Genomics 2011;12(5):S5.
17 Liu M-H, Yang B-R, Cheung W-F, Yang KY, Zhou H-F, Kwok JS-L, Liu GC, Li XF, Zhong S, Lee SM, et al. Transcriptome analysis of leaves, roots and flowers of Panax notoginseng identifies genes involved in ginsenoside and alkaloid biosynthesis. BMC Genomics 2015;16(1):265.   DOI
18 Liu Y, Mi Y, Zhang J, Li Q, Chen L. Illumina-based transcriptomic profiling of Panax notoginseng in response to arsenic stress. Botanical Studies 2016;57(1):13.   DOI
19 Wu Q, Song J, Sun Y, Suo F, Li C, Luo H, Liu Y, Li Y, Zhang X, Yao H, et al. Transcript profiles of Panax quinquefolius from flower, leaf and root bring new insights into genes related to ginsenosides biosynthesis and transcriptional regulation. Physiologia Plantarum 2010;138(2):134-49.   DOI
20 Gordon SP, Tseng E, Salamov A, Zhang J, Meng X, Zhao Z, Kang D, Underwood J, Grigoriev IV, Figueroa M, et al. Widespread Polycistronic Transcripts in Fungi Revealed by Single-Molecule mRNA Sequencing. PLOS ONE 2015;10(7):e0132628.   DOI
21 Pan Y, Wang X, Sun G, Li F, Gong X. Application of RAD sequencing for evaluating the genetic diversity of domesticated Panax notoginseng (Araliaceae). PLoS One 2016;11(11):e0166419.   DOI
22 Devi BSR, Kim Y-J, Sathiyamoorthy S, Khorolragchaa A, Gayathri S, Parvin S, Yang DU, Selvi SK, Lee OR, Lee S, et al. Classification and characterization of putative cytochrome P450 genes from Panax ginseng C. A. Meyer. Biochemistry (Moscow) 2011;76(12):1347-59.   DOI
23 Yin R, Zhao M, Wang K, Lin Y, Wang Y, Sun C, Wang Y, Zhang M. Functional differentiation and spatial-temporal co-expression networks of the NBSencoding gene family in Jilin ginseng, Panax ginseng C.A. Meyer. PLoS One 2017;12(7):e0181596.   DOI
24 Khorolragchaa A, Kim Y-J, Rahimi S, Sukweenadhi J, Jang M-G, Yang D-C. Grouping and characterization of putative glycosyltransferase genes from Panax ginseng Meyer. Gene 2014;536(1):186-92.   DOI
25 Yang J-L, Hu Z-F, Zhang T-T, Gu A-D, Gong T, Zhu P. Progress on the studies of the key enzymes of ginsenoside biosynthesis. Molecules 2018;23(3):589.   DOI
26 Nuruzzaman M, Cao H, Xiu H, Luo T, Li J, Chen X, Luo J, San Z, Luo D. Transcriptomics-based identification of WRKY genes and characterization of a salt and hormone-responsive PgWRKY1 gene in Panax ginseng. Acta Biochimica et Biophysica Sinica 2016;48(2):117-31.   DOI
27 Zhao Y, Yin J, Guo H, Zhang Y, Xiao W, Sun C, Wu J, Qu X, Yu J, Wang X, et al. The complete chloroplast genome provides insight into the evolution and polymorphism of Panax ginseng. Frontiers in Plant Science 2015;5(696).
28 Chen W, Kui L, Zhang G, Zhu S, Zhang J, Wang X, Yang M, Huang H, Liu Y, Wang Y, et al. Whole-genome sequencing and analysis of the Chinese herbal plant Panax notoginseng. Mol Plant 2017;10(6):899-902.   DOI
29 Wang H, Sun H, Kwon W-S, Jin H, Yang D-C. Molecular identification of the Korean ginseng cultivar "Chunpoong" using the mitochondrial nad7 intron 4 region. Mitochondrial DNA 2009;20(2-3):41-5.   DOI
30 Kim KJ, Lee HL. Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res 2004;11(4):247-61.   DOI
31 Kim K, Lee S-C, Lee J, Lee HO, Joh HJ, Kim N-H, Park H-S, Yang TJ. Comprehensive survey of genetic diversity in chloroplast genomes and 45S nrDNAs within Panax ginseng species. PLOS ONE 2015;10(6):e0117159.   DOI
32 Han Z-j, Li W, Liu Y, Gao L-z. The complete chloroplast genome of North American ginseng, Panax quinquefolius. Mitochondrial DNA Part A 2016;27(5):3496-7.   DOI
33 Nguyen B, Kim K, Kim Y-C, Lee S-C, Shin JE, Lee J, Kim NH, Jang W, Choi HI, Yang TJ. The complete chloroplast genome sequence of Panax vietnamensis Ha et Grushv (Araliaceae). Mitochondrial DNA Part A 2017;28(1):85-6.   DOI
34 Mathiyalagan R, Subramaniyam S, Natarajan S, Kim YJ, Sun MS, Kim SY, Kim YJ, Yang DC. Insilico profiling of microRNAs in Korean ginseng (Panax ginseng Meyer). Journal of Ginseng Research 2013;37(2):227-47.   DOI
35 Sun C, Li Y, Wu Q, Luo H, Sun Y, Song J, Lui EM, Chen S. De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis. BMC Genomics 2010;11(1):262.   DOI
36 Wu D, Austin RS, Zhou S, Brown D. The root transcriptome for North American ginseng assembled and profiled across seasonal development. BMC Genomics 2013;14(1):564.   DOI
37 Qi J, Sun P, Liao D, Sun T, Zhu J, Li X. Transcriptomic analysis of American ginseng seeds during the dormancy release process by RNA-seq. PLoS One 2015;10(3):e0118558.   DOI
38 Dong W, Liu H, Xu C, Zuo Y, Chen Z, Zhou S. A chloroplast genomic strategy for designing taxon specific DNA mini-barcodes: a case study on ginsengs. BMC Genetics 2014;15(1):138.   DOI
39 Manzanilla V, Kool A, Nguyen Nhat L, Nong Van H, Le Thi Thu H, de Boer HJ. Phylogenomics and barcoding of Panax: toward the identification of ginseng species. BMC Evolutionary Biology 2018;18(1):44.   DOI
40 Wang J, Li J, Li J, Liu S, Wu X, Li J, Gao W. Transcriptome profiling shows gene regulation patterns in ginsenoside pathway in response to methyl jasmonate in Panax Quinquefolium adventitious root. Scientific Reports 2016;6:37263.   DOI
41 Wu B, Wang M, Ma Y, Yuan L, Lu S. High-throughput sequencing and characterization of the small RNA transcriptome reveal features of novel and conserved MicroRNAs in Panax ginseng. PLoS One 2012;7(9):e44385.   DOI
42 Wei R, Qiu D, Wilson IW, Zhao H, Lu S, Miao J, Feng S, Bai L, Wu Q, Tu D, et al. Identification of novel and conserved microRNAs in Panax notoginseng roots by high-throughput sequencing. BMC Genomics 2015;16(1):835.   DOI
43 Zheng Y, Chen K, Xu Z, Liao P, Zhang X, Liu L, Wei K, Liu D, Li YF, Sunkar R, et al. Small RNA profiles from Panax notoginseng roots differing in sizes reveal correlation between miR156 abundances and root biomass levels. Scientific Reports 2017;7(1):9418.   DOI
44 Quan L-H, Min J-W, Sathiyamoorthy S, Yang D-U, Kim Y-J, Yang D-C. Biotransformation of ginsenosides Re and Rg1 into ginsenosides Rg2 and Rh1 by recombinant ${\beta}$-glucosidase. Biotechnology Letters 2012;34(5):913-7.   DOI
45 Chu Y, Xiao S, Su H, Liao B, Zhang J, Xu J, Chen S. Genome-wide characterization and analysis of bHLH transcription factors in Panax ginseng. Acta Pharmaceutica Sinica B 2018;8(4):666-77.   DOI
46 Lin Y, Wang K, Li X, Sun C, Yin R, Wang Y, Wang Y, Zhang M. Evolution, functional differentiation, and co-expression of the RLK gene family revealed in Jilin ginseng, Panax ginseng C.A. Meyer. Molecular Genetics and Genomics 2018;293(4):845-59.   DOI
47 Udall JA, Dawe RK. Is it ordered correctly? Validating genome assemblies by optical mapping. The Plant Cell 2018;30(1):7.   DOI
48 Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, Szczesniak MW, Gaffney D J, Elo L L, Zhang X, et al. A survey of best practices for RNA-seq data analysis. Genome Biology 2016;17(1):13.   DOI
49 Gassmann W, Appel HM, Oliver MJ. The interface between abiotic and biotic stress responses. J Exp Bot 2016;67(7):2023-4.   DOI
50 Kim D, Jung M, Ha JI, Lee YM, Lee S-G, Shin Y, Subramaniyam S, Oh J. Transcriptional profiles of secondary metabolite biosynthesis genes and cytochromes in the leaves of four Papaver species. Data 2018;3(4).
51 Galanie S, Thodey K, Trenchard IJ, Filsinger Interrante M, Smolke CD. Complete biosynthesis of opioids in yeast. Science 2015;349(6252):1095.   DOI
52 Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of nextgeneration sequencing technologies. Nature Reviews Genetics 2016;17:333.   DOI
53 Petrovska BB. Historical review of medicinal plants' usage. Pharmacognosy Reviews 2012;6(11):1-5.   DOI
54 Saito K. Phytochemical genomicsda new trend. Current Opinion in Plant Biology 2013;16(3):373-80.   DOI
55 Abbai R, Subramaniyam S, Mathiyalagan R, Yang DC. Functional genomic approaches in plant research. In: Hakeem KR, Malik A, Vardar-Sukan F, Ozturk M, editors. Plant bioinformatics: decoding the phyta. Cham: Springer International Publishing; 2017. p. 215-39.
56 Yonekura-Sakakibara K, Saito K. Functional genomics for plant natural product biosynthesis. Natural Product Reports 2009;26(11):1466-87.   DOI
57 Khater S, Anand S, Mohanty D. In silico methods for linking genes and secondary metabolites: the way forward. Synth Syst Biotechnol 2016;1(2):80-8.   DOI
58 Yin P, Xu G. Current state-of-the-art of nontargeted metabolomics based on liquid chromatographyemass spectrometry with special emphasis in clinical applications. Journal of Chromatography A 2014;1374:1-13.   DOI
59 Krumsiek J, Bartel J, Theis FJ. Computational approaches for systems metabolomics. Current Opinion in Biotechnology 2016;39:198-206.   DOI
60 van Dam S, Vosa U, van der Graaf A, Franke L, de Magalhaes JP. Gene coexpression analysis for functional classification and geneedisease predictions. Briefings in Bioinformatics 2018;19(4):575-92.
61 Restrepo-Perez L, Joo C, Dekker C. Paving the way to single-molecule protein sequencing. Nature Nanotechnology 2018;13(9):786-96.   DOI
62 Kim MK, Lee B-S, In J-G, Sun H, Yoon J-H, Yang D-C. Comparative analysis of expressed sequence tags (ESTs) of ginseng leaf. Plant Cell Reports 2006;25(6):599-606.   DOI
63 Shi F-X, Li M-R, Li Y-L, Jiang P, Zhang C, Pan Y-Z, Liu B, Xiao H-X, Li L-F. The impacts of polyploidy, geographic and ecological isolations on the diversification of Panax (Araliaceae). BMC Plant Biology 2015;15(1):297.   DOI
64 Jiang P, Shi F-X, Li M-R, Liu B, Wen J, Xiao H-X, Li L-F. Positive selection driving cytoplasmic genome evolution of the medicinally important ginseng plant genus Panax. Frontiers in Plant Science 2018;9(359).
65 Choi D-W, Jung J, Ha YI, Park H-W, In DS, Chung H-J, Liu JR. Analysis of transcripts in methyl jasmonate-treated ginseng hairy roots to identify genes involved in the biosynthesis of ginsenosides and other secondary metabolites. Plant Cell Reports 2005;23(8):557-66.   DOI
66 Jung JD, Park HW, Hahn Y, Hur CG, In DS, Chung HJ, Liu JR, Choi DW. Discovery of genes for ginsenoside biosynthesis by analysis of ginseng expressed sequence tags. Plant Cell Reports 2003;22(3):224-30.   DOI
67 Gurung B, Bhardwaj PK, Talukdar NC. Subtractive transcriptome analysis of leaf and rhizome reveals differentially expressed transcripts in Panax sokpayensis. Functional & Integrative Genomics 2016;16(6):619-39.   DOI
68 Sathiyamoorthy S, In JG, Gayathri S, Kim YJ, Yang DC. Gene ontology study of methyl jasmonate-treated and non-treated hairy roots of Panax ginseng to identify genes involved in secondary metabolic pathway. Russian Journal of Genetics 2010;46(7):828-35.   DOI
69 Sathiyamoorthy S, In Jun-Gyo, Lee Byum-Soo, Kwon Woo-Seang, Yang Dong-Uk, Kim Ju-Han, Yang Deok-Chun. Insilico analysis for expressed sequence tags from embryogenic callus and flower buds of Panax ginseng C. A. Meyer. Journal of Ginseng Research. 2011;35(1):21-30.   DOI
70 Chen S, Luo H, Li Y, Sun Y, Wu Q, Niu Y, Song J, Lv A, Zhu Y, Sun C, et al. 454 EST analysis detects genes putatively involved in ginsenoside biosynthesis in Panax ginseng. Plant Cell Reports 2011;30(9):1593.   DOI
71 Rai A, Yamazaki M, Takahashi H, Nakamura M, Kojoma M, Suzuki H, Saito K. RNA-seq Transcriptome analysis of Panax japonicus, and its comparison with other panax species to identify potential genes involved in the saponins biosynthesis. Frontiers in Plant Science 2016;7(481).
72 Zhang S, Wu Y, Jin J, Hu B, Zeng W, Zhu W, Zheng Y, Chen P. De novo characterization of Panax japonicus C. A. Mey transcriptome and genes related to triterpenoid saponin biosynthesis. Biochemical and Biophysical Research Communications 2015;466(3):450-5.   DOI
73 Zhang G-H, Ma C-H, Zhang J-J, Chen J-W, Tang Q-Y, He M-H, Xu XZ, Jiang NH, Yang SC. Transcriptome analysis of Panax vietnamensis var. fuscidicus discovers putative ocotillol-type ginsenosides biosynthesis genes and genetic markers. BMC Genomics 2015;16(1):159.   DOI
74 Tang Q-Y, Chen G, Song W-L, Fan W, Wei K-H, He S-M, Zhang GH, Tang JR, Li Y, Lin Y, et al. Transcriptome analysis of Panax zingiberensis identifies genes encoding oleanolic acid glucuronosyltransferase involved in the biosynthesis of oleanane-type ginsenosides. Planta Feb 2019;249(2):393-406.
75 Lum JH-K, Fung K-L, Cheung P-Y, Wong M-S, Lee C-H, Kwok FS-L, Leung MC, Hui PK, Lo SC. Proteome of Oriental ginseng Panax ginseng C. A. Meyer and the potential to use it as an identification tool. Proteomics 2002;2(9):1123-30.   DOI
76 Chen K, Liu L, Zhang X, Yuan Y, Ren S, Guo J, Wang Q, Liao P, Li S, Cui X, et al. Phased secondary small interfering RNAs in Panax notoginseng. BMC Genomics 2018;19(Suppl 1):41.   DOI
77 Ahuja A, Kim JH, Kim J-H, Yi Y-S, Cho JY. Functional role of ginseng-derived compounds in cancer. Journal of Ginseng Research 2018;42(3):248-54.   DOI
78 Yang W-z, Hu Y, Wu W-y, Ye M, Guo D-a. Saponins in the genus Panax L. (Araliaceae): a systematic review of their chemical diversity. Phytochemistry 2014;106:7-24.   DOI
79 Im D-s, Nah S-y. Yin and Yang of ginseng pharmacology: ginsenosides vs gintonin. Acta Pharmacologica Sinica 2013;34:1367.   DOI
80 Mohanan P, Subramaniyam S, Mathiyalagan R, Yang D-C. Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions. Journal of Ginseng Research 2018;42(2):123-32.   DOI
81 Baeg I-H, So S-H. The world ginseng market and the ginseng (Korea). Journal of Ginseng Research 2013;37(1):1-7.   DOI
82 Sathiyamoorthy S, In J-G, Gayathri S, Kim Y-J, Yang D-C. Generation and gene ontology based analysis of expressed sequence tags (EST) from a Panax ginseng C. A. Meyer roots. Molecular Biology Reports 2010;37(7):3465-72.   DOI
83 Dominguez Del Angel V, Hjerde E, Sterck L, Capella-Gutierrez S, Notredame C, Vinnere Pettersson O, Amselem J, Bouri L, Bocs S, Klopp C, et al. Ten steps to get started in genome assembly and annotation. F1000Research 2018;7. ELIXIRe148.
84 Choi H-IL, Kim N-H, Lee J, Choi BS, Kim KD, Park JY, Lee SC, Yang TJ. Evolutionary relationship of Panax ginseng and P. quinquefolius inferred from sequencing and comparative analysis of expressed sequence tags. Genetic Resources and Crop Evolution 2013;60(4):1377-87.   DOI
85 Qiao Y-J, Shang J-H, Wang D, Zhu H-T, Yang C-R, Zhang Y-J. Research of Panax spp. in Kunming Institute of Botany, CAS. Natural Products and Bioprospecting 2018;8(4):245-63.   DOI
86 Wu B, Long Q, Gao Y, Wang Z, Shao T, Liu Y, Li Y, Ding W. Comprehensive characterization of a time-course transcriptional response induced by autotoxins in Panax ginseng using RNA-Seq. BMC Genomics 2015;16(1):1010.   DOI
87 Subramaniyam S, Mathiyalagan R, Natarajan S, Kim Y-J, Jang M-g, Park J-H, Yang DC. Transcript expression profiling for adventitious roots of Panax ginseng Meyer. Gene 2014;546(1):89-96.   DOI
88 Li C, Zhu Y, Guo X, Sun C, Luo H, Song J, Li Y, Wang L, Qian J, Chen S. Transcriptome analysis reveals ginsenosides biosynthetic genes, microRNAs and simple sequence repeats in Panax ginseng C. A. Meyer. BMC Genomics 2013;14(1):245.   DOI
89 Jayakodi M, Lee S-C, Lee YS, Park H-S, Kim N-H, Jang W, Lee HO, Joh HJ, Yang TJ. Comprehensive analysis of Panax ginseng root transcriptomes. BMC Plant Biology 2015;15:138.   DOI
90 Liu S, Wang S, Liu M, Yang F, Zhang H, Liu S, Wang Q, Zhao Y. De novo sequencing and analysis of the transcriptome of Panax ginseng in the leafexpansion period. Molecular Medicine Reports 2016;14(2):1404-12.   DOI
91 Wang K, Jiang S, Sun C, Lin Y, Yin R, Wang Y, Zhang M. The spatial and temporal transcriptomic landscapes of ginseng, Panax ginseng C. A. Meyer. Scientific Reports 2015;5:18283.   DOI
92 Gao Y, He X, Wu B, Long Q, Shao T, Wang Z, Wei J, Li Y, Ding W. Time-course transcriptome analysis reveals resistance genes of Panax ginseng induced by cylindrocarpon destructans infection using RNA-seq. PLoS One 2016;11(2):e0149408.   DOI
93 Cao H, Nuruzzaman M, Xiu H, Huang J, Wu K, Chen X, Li J, Wang L, Jeong JH, Park SJ, et al. Transcriptome analysis of methyl jasmonate-elicited Panax ginseng adventitious roots to discover putative ginsenoside biosynthesis and transport genes. International Journal of Molecular Sciences 2015;16(2):3035.   DOI
94 Ma R, Sun L, Chen X, Mei B, Chang G, Wang M, Zhao D. Proteomic Analyses Provide Novel Insights into Plant Growth and Ginsenoside Biosynthesis in Forest Cultivated Panax ginseng (F. Ginseng). Frontiers in Plant Science 2016;7(1).
95 Kim SI, Kim JY, Kim EA, Kwon K-H, Kim K-W, Cho K, Lee JH, Nam MH, Yang DC, Yoo JS, et al. Proteome analysis of hairy root from Panax ginseng C. A. Meyer using peptide fingerprinting, internal sequencing and expressed sequence tag data. Proteomics 2003;3(12):2379-92.   DOI
96 Nam MH, Heo EJ, Kim JY, Kim SI, Kwon K-H, Seo JB, Kwon O, Yoo JS, Park YM. Proteome analysis of the responses of Panax ginseng C. A. Meyer leaves to high light: Use of electrospray ionization quadrupole-time of flight mass spectrometry and expressed sequence tag data. Proteomics 2003;3(12):2351-67.   DOI
97 Ma R, Sun L, Chen X, Jiang R, Sun H, Zhao D. Proteomic changes in different growth periods of ginseng roots. Plant Physiology and Biochemistry 2013;67:20-32.   DOI
98 Sun H, Liu F, Sun L, Liu J, Wang M, Chen X, Xu X, Ma R, Feng K, Jiang R. Proteomic analysis of amino acid metabolism differences between wild and cultivated Panax ginseng. Journal of Ginseng Research 2016;40(2):113-20.   DOI
99 Nesvizhskii AI. Proteogenomics: concepts, applications and computational strategies. Nature Methods 2014;11:1114.   DOI
100 Martinez-Esteso MJ, Martinez-Marquez A, Selles-Marchart S, Morante-Carriel JA, Bru-Martinez R. The role of proteomics in progressing insights into plant secondary metabolism. Frontiers in Plant Science 2015;6:504.