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Understanding the role of the microbiome in human health and how it can be modulated is 
becoming increasingly relevant for preventive medicine and for the medical management of 
chronic diseases. The development of high-throughput sequencing technologies has boosted 
microbiome research through the study of microbial genomes and allowing a more precise 
quantification of microbiome abundances and function. Microbiome data analysis is chal-
lenging because it involves high-dimensional structured multivariate sparse data and be-
cause of its compositional nature. In this review we outline some of the procedures that are 
most commonly used for microbiome analysis and that are implemented in R packages. We 
place particular emphasis on the compositional structure of microbiome data. We describe 
the principles of compositional data analysis and distinguish between standard methods and 
those that fit into compositional data analysis. 
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Introduction 

The study of the human microbiome and its role in human health is an active area of re-
search. The human microbiome is involved in a large number of essential functions, like 
food digestion and modulation of the immune system, and alterations in microbiome 
composition may have important effects on human health. Many diseases have already 
been found to be associated with changes in the human microbiome. Different studies 
have shown that obesity is indeed partly determined by the composition of our gut micro-
biome. Chronic inflammatory skin conditions such as psoriasis, atopic dermatitis, acne 
and chronic skin ulcers have been associated to cutaneous microbiome changes. The co-
lonic microbiota is suspected to be involved in the development of colorectal cancers. In-
flammatory bowel diseases have long been associated to interactions between microbes 
and the host since the microbiome is essential for the activation of host immune responses. 
Microbial diversity is significantly diminished in Crohn disease. Early childhood antibiotic 
exposure has been associated with significantly increased risk for Crohn disease [1,2]. Un-
derstanding the role of the microbiome in human health and how it can be modulated is 
becoming increasingly relevant for preventive medicine and for the medical management 
of chronic diseases. 

The terms microbiome and microbiota are used indistinctly to describe the community of 
microorganisms that live in a given environment. High-throughput DNA sequencing tech-
nologies have powered microbiome research by enabling the study of the genomes of all mi-
croorganisms of a given environment and a more precise quantification of microbiome abun-
dances and function. Fig. 1 summarizes the main steps of a microbiome study: (1) microbial 
DNA extraction and sequencing according to two main approaches, amplicon sequencing 
and shotgun sequencing; (2) bioinformatics sequence processing; and (3) statistical analysis. 
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Amplicon sequencing relies on sequencing a phylogenetic marker 
gene after polymerase chain reaction (PCR) amplification. For bacte-
ria and archaea, the marker gene is the 16S ribosomal RNA gene that 
encodes the RNA component of the small ribosomal subunit. The 
16S rRNA gene contains both highly conserved areas and hypervari-
able sites, denoted as V1–V9. The conserved regions can be targeted 
with PCR primers while the hypervariable regions are specific to each 
microbial species and make possible to distinguish the different mi-
crobes. The V1–V3 and V4 regions are most commonly targeted. 
PCR amplification creates thousands to millions of copies (ampli-
cons) of the DNA target region. PCR amplicons are then sequenced 
using high-throughput sequencing platforms and multiple nucleotide 
sequences, also known as reads, are obtained [3]. 

There are a number of bioinformatic pipelines available for pro-
cessing microbiome 16S sequence data, the two most popular for 
amplicon sequencing are mothur [4] and QIIME [5]. Both pipe-
lines are user-friendly and produce similar results. The bioinformat-
ics pipeline consists of five main steps: Preprocessing and quality 
control filtering, operational taxonomic unit (OTU) binning, tax-
onomy assignment, construction of the abundance table and phy-
logenetic analysis. 

Preprocessing and quality control filtering consists on first assign 
the sequences to samples (demultiplexing) and then sequences are 
quality filtered to remove too short sequences, too many ambigu-

ous base pairs and chimeras. OTU binning is the process of cluster-
ing similar DNA sequences into OTUs, that is, groups of DNA se-
quences with at least 97% similarity. The different sequences as-
signed to an OTU are represented by a consensus sequence deter-
mined by the most common nucleotide at each position. Taxono-
my assignment is then obtained by comparing OTU consensus se-
quences to microbial 16S rRNA reference databases such as Green-
Genes (http:// greengenes.second.genome.com), SILVA (https://
www.arb-silva.de), or RDP (http://rdp.cme.msu.edu). Taxonomy 
assignment provides the available annotation of each OTU to the 
different taxonomy levels (domain, kingdom, phylum, class, order, 
family, genus, and species). In practice, many OTUs are not com-
pletely annotated, especially for low taxonomy levels. Next, an 
OTU abundance table is built where each entry in the table corre-
sponds to the number of sequences (reads) observed for each sam-
ple corresponding to each OTU. OTU tables may be extremely 
sparse with many OTUs only observed in a few samples. In this 
case it is convenient to agglomerate OTUs at broader taxonomic 
groups or taxa. The last step of the bioinformatics pipeline is phylo-
genetic analysis. Phylogenetic trees can be used to obtain phyloge-
netic distances between samples. 

Shotgun metagenomics sequencing involves sequencing the total 
microbial DNA of a sample, instead of just a particular marker gene. 
With this technique, we can infer the relative abundance of every 

Fig. 1. Main steps of a microbiome study: (1) microbial DNA extraction and sequencing, (2) bioinformatics sequence processing, and (3) 
statistical analysis. 
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microbial gene and quantify specific metabolic pathways to predict 
the potential functionality of the entire community. This is 
achieved by mapping the obtained sequences against a database 
such as Kyoto Encyclopedia of Genes and Genomes (KEGG; 
https://www.genome.jp/kegg/pathway.html). A gene pathway ta-
ble resulting from this type of functional study provides the num-
ber of sequences associated to a particular function for each sample. 
HumanN2 [6] and MetaPhlAn 2 [7] are two bioinformatics pipe-
lines for metagenomics analysis.  

From a statistical point of view, the output of both microbiome 
approaches, amplicon and shotgun sequencing, is similar: an abun-
dance table of counts representing the number of sequences per 
sample for a specific taxon or the number of sequences matching a 
specific gene function. In this paper we illustrate the methodologies 
with data from 16S rRNA amplicon sequencing but most ap-
proaches also apply for microbiome shotgun metagenomics. 

There are many reasons why the analysis of microbiome data is 
so challenging. On one hand, we face the usual challenges of count 
data analysis, i.e., skewed distribution, zero inflation and over-dis-
persion. Because of the experimental process and quality control 
filtering, microbiome data is very noisy and the total number of 
counts per sample is highly variable, which requires some normal-
ization prior to the analysis so that the microbiome abundances 
among the different samples are comparable. Abundance tables are 
usually sparse since many species are infrequent. There is much re-
dundant information because of co-abundance of many species. 
Moreover, the total number of counts per sample is constrained by 
the maximum number of sequence reads that the DNA sequencer 
can provide. This total count constraint induces strong dependen-
cies among the abundances of the different taxa characterizing the 
compositional structure of microbiome data. Ignoring the compo-
sitionality of microbiome data may yield spurious results. In section 
2, we describe the main principles of compositional data analysis. 

The statistical analysis of microbiome abundance data usually 
starts with the normalization of the data followed by an exploratory 
study of the microbiome composition for the identification of pos-
sible data structures. The exploratory part consists of the analysis of 
diversity measures and their visualization through ordination plots, 
a term used in ecology to refer to several multivariate techniques for 
visualization of species abundance in a low-dimensional space. Sub-
sequently, an inference analysis is performed where microbiome 
composition is tested for association with a variable of interest; this 
is known as differential abundance testing when the outcome of in-
terest is dichotomous (i.e., disease status). These association tests 
can be multivariate, when the interest is to assess for global differ-
ences in microbial composition between sample groups, or univari-
ate, with the aim of identifying which taxa are differentially abun-

dant between sample groups. However, as we discuss later, univari-
ate approaches for microbiome analysis are questionable and their 
results should be regarded with caution. 

In sections 3 and 4, we describe the procedures that are com-
monly performed in a microbiome statistical analysis: normaliza-
tion, diversity analysis, ordination and differential abundance test-
ing, both, multivariate and univariate. This is not intended to be an 
exhaustive or systematic review of all the available methods. We 
outline some of the most widely used techniques for microbiome 
analysis, especially those that are implemented in R packages. We 
distinguish between standard methods and those that fit into com-
positional data analysis. 

Microbiome Compositional Data
 
Microbiome data is compositional because the information that 
abundance tables contain is relative. In a microbiome abundance 
table, the total number of counts per sample is highly variable and 
constrained by the maximum number of DNA reads that the se-
quencer can provide. This total count constraint induces strong de-
pendencies among the abundances of the different taxa; an increase 
in the abundance of one taxon implies the decrease of the observed 
number of counts for some of the other taxa so that the total num-
ber of counts does not exceed the specified sequencing depth. 
Moreover, observed raw abundances and the total number of reads 
per sample are non-informative since they represent only a fraction 
or random sample of the original DNA content in the environment. 
These characteristics of microbiome abundance data clearly fall 
into the notion of compositional data. 

Compositional data are defined as a vector of strictly positive real 
numbers 

with a constraint or non-informative total sum. The elements of a 
composition are called components or parts. In a composition the 
value of each component is not informative by itself and the rele-
vant information is contained in the ratios between the compo-
nents or parts [8]. Except for the fact that microbiome abundance 
tables contain many zeros, microbiome data fit the definition of 
compositional data and, as already acknowledged by many authors 
[9,10], their analysis requires the use of a proper mathematical the-
ory [11]. Aitchison introduced the log-ratio approach and laid the 
foundations of Compositional Data Analysis (CoDA). 

Mathematically, the assertion that the relevant information is 
contained in the ratios between the components implies that two 
proportional compositions are equally informative and this induces 
equivalence classes of vectors carrying the same information. Two 

x= (x 1, , xk ); xi >0 ,i ! {1, ,k}
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vectors are compositionally equivalent if they are proportional. 
Each equivalence class has a representative in the unit simplex de-
fined as: 

The simplex is thus the sample space of compositional data. In mi-
crobiome analysis, for example, both the raw counts and their trans-
formation into relative abundances or proportions belong to the 
same equivalence class and they carry the same relative information. 

Three important conditions should be fulfilled for a proper analy-
sis of compositions: permutation invariance, scale invariance and 
sub-compositional coherence [11]. Permutation invariance states 
that a change in the order of the parts in the composition should not 
affect the results. Scale invariance establishes that any function used 
for the analysis of compositional data must be invariant for any ele-
ment of the same compositionally equivalent class. Sub-composition-
al coherence requires that the results obtained when a subset of com-
ponents is analyzed is coherent with the results for the whole compo-
sition. In the context of microbiome analysis this principle is import-
ant because we usually work with sub-compositions obtained after 
filtering out the most low-abundant taxa. Ignoring the compositional 
nature of microbiome data can result in spurious correlations and 
sub-compositional incoherencies. 

Aitchison [11] put the basis of CoDA by introducing what is 
now called the Aitchison's log-ratio approach. The log-ratio analysis 
was introduced in order to meet the principle of scale invariance; as 
stated by Aitchison [11], “any meaningful (scale-invariant) function 
of a composition can be expressed in terms of ratios of its compo-
nents.” Because the logarithmic transformation makes ratios mathe-
matically more tractable, the simplest invariant function is given by 
the log-ratio between two components, that is: 

The generalization of a log-ratio is a log-contrast function defined 
as a linear combination of logarithms of the components with the 
restriction that the sum of the coefficients is equal to 0: 

Log-contrast functions are suitable for CoDA because they are scale 
invariant. 

As an alternative to working in the simplex, several data transfor-
mations have been proposed that transform compositional data to 
the real space where classical statistical analysis can be applied. All 
of them are based on log-ratios between components. 

The additive log-ratio transformation (alr) is the first proposal 

introduced by Aitchison [11]. Taking one part as the reference, for 
instance xk, the alr transformation is defined as:  

Aitchison also defined the centered log-ratio transformation (clr) 
to treat the parts symmetrically. The clr transformation is given by:  

where g(x) = (          )1/k  is the geometric mean of the composition. 
One characteristic of the clr transformation is that the transformed 
components are restricted to have a sum equal to zero and this im-
plies that some common statistical analyses cannot be applied after 
the clr transformation because of a singular covariance matrix. 

The third alternative is the isometric log-ratio transformation 
(ilr) and consists in the representation of a composition given a 
particular orthonormal basis in the simplex. It overcomes the prob-
lem of the singular covariance matrix present in the clr-transforma-
tion. For a detailed description see Egozcue et al. [12]. 

Exploratory Analysis of Microbiome Data 

The main element of a microbiome study is the microbiome abun-
dance table, a matrix of counts, X, with n rows (samples) and k col-
umns (taxa) where each entry xij provides the number of sequences 
(reads) corresponding to taxon j in sample i. Sometimes abundance 
tables are transposed, rows are taxa and columns are samples. Apart 
from the abundance table, other elements that may be available for 
microbiome analysis are the sample data, the taxonomy table, and 
the phylogenetic tree. Several R and Bioconductor packages, such 
as phyloseq, are designed to facilitate the integration of all these ele-
ments in a microbiome analysis [13]. 

Normalization 
The large variability of the total counts per sample prevents mean-
ingful comparisons of raw abundances between individuals. This is 
usually addressed through normalization of raw counts before the 
analysis. The most simple and frequently used normalization is the 
computation of relative abundances by dividing the raw abundanc-
es by the total number of counts per sample. Another popular nor-
malization approach is rarefaction, which consists on subsampling 
the same number of reads for each sample so that all samples have 
the same number of total counts. Rarefaction is not recommended 
because it entails the loss of important information [14]. More so-
phisticated normalization techniques are implemented in some R 
packages, such as, DESeq [15] or edgeR [16], initially developed 
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for RNA-seq analysis, that are also used for microbiome differential 
abundance testing. See Weiss et al. [17] for a comparison and dis-
cussion on the performance of different normalization methods for 
microbiome analysis. 

CoDA techniques do not require the normalization step because 
the log-ratio approach involves working with ratios between com-
ponents and this cancels the effect of the total counts per sample. 
Instead, CoDA methods entail the imputation of zeros. Microbi-
ome abundance tables are sparse, they contain many zeros, and this 
should be properly addressed before compositional data methods 
can be applied. The simplest approach is to replace zeros by a small 
pseudo-count or to add a small constant to all the elements of the 
abundance matrix. As an alternative, Martín-Fernández et al. [18] 
propose the Bayesian-Multiplicative treatment, a zero replacement 
involving Bayesian inference and a modification of the non-zero 
values so that the original ratios between the non-zero components 
are preserved. 

Diversity analysis 
The diversity of the microbiome is an important indicator of the 
good or bad conditions of the ecosystem, with larger microbiome 
diversity being usually associated to better health status. Microbi-
ome diversity can be assessed through multiple ecological indices 
that can be divided into two kind of measures, alpha and beta diver-
sity. Alpha diversity measures the variability of species within a 
sample while beta diversity accounts for the differences in compo-
sition between samples. The R package vegan provides a large set of 
diversity measures [19]. 

Alpha diversity: within sample diversity 
The most important measure of alpha diversity is richness, de-

fined as the number of different species present in an environment. 
Richness is estimated by the observed richness, Robs, the number of 
different species observed in the sample. The observed richness 
tends to underestimate the real richness in the environment, where 
the less frequent species are likely to be undetected. There are dif-
ferent indices that adjust for this and try to estimate the hidden part 
that has not been detected. One of the most extended richness 
measure is Chao1 index defined as

 
where f1 is the number of species observed only once and f2 is the 
number of species observed twice. 

Another important indicator of alpha diversity is evenness, which 
measures the homogeneity in abundance of the different species in 
a sample. A commonly used measure of evenness is the Shannon 

index defined as 

where pi represents the relative abundances of the i-th taxon. 

Beta diversity: between samples diversity 
Beta diversity measures the differences in microbiome composition 
between samples. There is a wide range of ecological distances or 
dissimilarities for measuring how close are two microbial composi-
tions. The most commonly used are Bray-Curtis, UniFrac and 
weighted UniFrac distances. We also define the Aitchison distance 
which is a proper distance for compositional data. 

Let p1 =  (p11,…,p1k ) and p2 =  (p21,…,p2k ) denote the microbi-
ome relative abundance of two different samples. 

Bray-Curtis is defined as follows:

UniFrac family of distances [20] consider the phylogenetic tree 
that represents the evolutionary relationships among the different 
taxa. The phylogenetic tree can be obtained from the bioinformatic 
pipelines, such as mothur and QIIME. For a tree with r branches, 
let b =  (b1,…,br) represent the length of the different branches in 
the phylogenetic tree, and q1 =  (q11, … ,q1r), and q2 =  (q21,… ,q2r) 
the relative abundances associated to each branch for the first and 
the second sample, respectively. 

The unweighted UniFrac distance measures the relative length of 
those branches that lead exclusively to species present in only one 
of the two samples with respect to the total length of all branches in 
the tree: 

The unweighted UniFrac distance only takes into account the 
presence or absence of the taxa but Lozupone et al. [20] also intro-
duced the weighted UniFrac distance that includes information on 
the relative abundance of each taxa and is defined as follows: 

For a proper CoDA analysis, a distance must be subcomposition-
ally dominant, which means that the distance between two points 
in a multi-dimensional space should always be larger than their dis-
tance when projected in a lower dimensional space (sub-composi-
tion). Most commonly used distances in microbiome analysis, such 
as, the Bray-Curtis and the weighted and unweighted UniFrac dis-
tances are not sub-compositionally dominant, and this may induce 
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sub-compositionally incoherencies that question the reliability of 
the results of any distance-based analysis [8,11,21]. 

The Aitchison distance is a sub-compositionally coherent dis-
tance defined as the Euclidean distance after the clr-transformation 
of the compositions. Given two compositions x1 and x2, the Aitchi-
son distance is given by 

where dE denotes Euclidean distance. 

Ordination 
The goal of ordination plots is the visualization of beta diversity for 
identification of possible data structures. The multidimensional 
data is represented into a reduced number of orthogonal axes while 
keeping the main trends of the data and preserving the distances 
among samples as much as possible. Most commonly used ordina-
tion methods for microbiome data are principal coordinates analy-
sis (PCoA), also known as multidimensional scaling, and non-met-
ric multidimensional scaling (NMDS) [22,23]. 

PCoA an extension of Principal Components Analysis (PCA). 
Given a distance or dissimilarity matrix, D, PCoA performs eigen-
value decomposition of Dc'Dc where Dc is the centered distance ma-
trix. When D is the Euclidean distance, PCoA results exactly the 
same as PCA. Care must be taken with PCoA if the selected dis-
tance is not metric, because some eigenvalues may be negative and 
then, the graphical representation will not perform properly. 

In order to avoid this problem NMDS is more commonly used. 
Also based on a distance matrix D, NMDS maximizes the rank-
based correlation between the original distances and the distances 
between samples in the new reduced ordination space. The proce-
dure starts with a random configuration and the optimal represen-
tation is obtained following an iterative procedure that at each steps 
improves the rank correlation. 

Ordination plots can be obtained with the R and Bioconductor 
packages vegan and phyloseq, among others [13,19]. Alternatively, a 
CoDA ordination approach can be followed by performing PCA af-
ter the clr or ilr transformation as implemented by Le Cao et al. [24] 
in the context of the multivariate statistical framework mixMC. 

Microbiome Statistical Inference 

Multivariate differential abundance testing 
Multivariate differential abundance testing refers to a global test of 
differences in microbial composition between two or more groups 
of samples. We can distinguish between distance-based or mod-
el-based approaches. 

Permutational Multivariate Analysis of Variance Using Distance 

Matrices, PERMANOVA [25], is perhaps the most widely used 
distance-based method for multivariate community analysis. The 
null hypothesis of no differences in composition among groups is 
formulated by the condition that the different groups of samples 
have the same center of masses. Implemented in the function 
“adonis” of the vegan R package, it consists of a multivariate ANO-
VA based on dissimilarities. The variability within groups is com-
pared against the variability between groups with the usual ANO-
VA F statistic, but partition of sums-of-squares is applied directly to 
dissimilarities. Significance is evaluated through permutations to 
generate a distribution of the pseudo F statistic under the null. 

A related and popular distance-based approach is the analysis of 
similarities [26], implemented in the function “anosim” of the veg-
an R package.  

An interesting model-based approach for multivariate microbi-
ome analysis is Kernel machine regression (KMR), that extends 
PERMANOVA to a regression framework [27]. KMR is a 
semi-parametric regression model that includes a nonparametric 
component. The model can be expressed as a semiparametric lin-
ear regression model when the response variable is continuous 

or as a semiparametric logistic regression model for a dichotomous 
response variable

In the context of microbiome analysis, X is the microbiome 
abundance matrix and the non-parametric component h(X) mea-
sures the relationship between microbiome composition and the 
outcome. This association can be tested according to the following 
hypothesis: 

The nonparametric component is related to a Kernel matrix that 
is a transformation of the distance matrix D of pairwise distances 
between individuals. KMR is implemented for microbiome analy-
sis in the R package MiRKAT [28]. KMR can be adapted to CoDA 
by using a subcompositionally dominant function, such as, the 
Aitchison distance. Rivera-Pinto [29] has implemented this adapta-
tion in the R package MiRKAT-CoDA. The algorithm also includes 
a weighted version that allows the identification of the taxa that are 
more relevant for the joint association. 

Among the different model-based methods for microbiome dif-
ferential abundance testing we highlight the work by La Rosa et al. 
[30] that consider the Dirichlet-Multinomial distribution for hy-
pothesis testing, power and sample size calculations. The proposed 
methods are implemented in the R package HMP. 

dA (x 1,x 2) = d E (clr(x 1),clr(x 2))

yi = b 0 + blZi + h(Xi) + e i

logit (yi) = b 0 + blZi + h(Xi) + e i
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Le Cao et al. [24] propose the multivariate statistical framework 
mixMC where they perform sparse partial least squares discrimi-
nant analysis (sPLS-DA), implemented in the R package mixOmics 
[31]. In order to acknowledge the compositional structure of mi-
crobiome data, they apply sPLS-DA after the clr transformation. 
PLS-DA maximizes the covariance between linear combinations of 
the taxa and the response variable. The sparse version of PLS-DA 
uses Lasso penalized regression [32] and thus, it performs variable 
selection that enables the identification of the taxa that are most as-
sociated with the outcome. 

Univariate differential abundance testing 
When significant global differences in microbiome composition 
are detected between groups of samples, a natural question arises: 
which particular taxa are responsible of that global difference? A 
common strategy to answer this question is to test every taxa sepa-
rately for association with the response variable. When the response 
variable is dichotomous this is known as univariate differential 
abundance testing. 

Below we describe both, classical and CoDA approaches for uni-
variate differential abundance testing. However, we advise that clas-
sical univariate approaches are notably affected by the composition-
al structure of microbiome data and their results, with large false 
discovery rates, might be questioned [17,33]. 

Nonparametric tests, like the Wilcoxon rank-sum test or the Kru-
skal-Wallis test, can be applied. However, more powerful paramet-
ric approaches are available, such as the Bioconductor packages 
edgeR [16] and DESeq2 [34], initially proposed for transcriptom-
ics analysis (RNA-Seq data). Both fit a generalized linear model 
and assume that read counts follow a Negative Binomial distribu-
tion. The NB distribution extends the Poisson distribution by al-
lowing the variance to be different from the mean. edgeR and 
DESeq2 mainly differ in the way they normalize the data. DESeq2 
uses size factors that account for differences in sequencing depth 
between samples and shrinkage for large variances correction. edg-
eR can be implemented with different normalization methods but 
the most recommended is TMM, the trimmed mean of M-values 
normalization method, that indirectly attempts to overcome the 
problem of compositional DNA sequencing data ("the proportion 
of reads attributed to a given gene in a library depends on the ex-
pression properties of the whole sample rather than just the expres-
sion level of that gene") [16]. 

Two CoDA methods that explicitly accounts for the composi-
tional nature of microbiome data are ANCOM [35] and ALDEx2 
[36]. In ANCOM, the log-ratio of all pairs of variables is tested for 
differences in means. The number of significant results involving 
each variable is used to determine its significance. The ALDEx2 al-

gorithm uses a Dirichlet-multinomial model to infer the multivari-
ate abundance distribution from counts. After clr transformation it 
performs the Wilcoxon rank test (two groups) or Kruskal-Wallis 
tests (more than two groups). 

Microbial signatures 
Recently, Rivera-Pinto et al. [37] have proposed a new CoDA ap-
proach for microbiome analysis that is aimed to the identification 
of microbial signatures, groups of microbial taxa that are predictive 
of a phenotype of interest. The identification of microbial signa-
tures involves both modeling and variable selection: modeling the 
response variable and identifying the smallest number of taxa with 
the highest prediction or classification accuracy. In order to fulfill 
the principles of CoDA, instead of analyzing individual abundanc-
es, we analyze the relative abundances between two groups of taxa, 
also referred as the abundance balance between the two groups, a 
concept that is formally defined as follows:  

Let x = (x1,x2,...,xk) be the microbial composition of k taxa and, 
among these k taxa, let's consider two disjoint subgroups of taxa, 
group A and group B, with composition abundances denoted by xA 
and xB, each group with kA and kB different taxa and indexed by IA 
and IB, respectively. The abundance balance between A and B, de-
noted by B(A,B), is defined as the log-ratio between the geometric 
mean abundances of the two groups of taxa as follows:  

where C is a normalization constant. The larger the values of bal-
ance B(A,B), the more abundant is group A with respect to group B. 
Positive values of B(A,B) arise when group A is more abundant 
than group B while negative values of B(A,B) correspond to larger 
abundance of group B relative to group A abundance. A value of 
B(A,B) = 0 correspond to a perfect balance between the abundanc-
es of both groups of taxa. 

The goal of the proposed algorithm is the identification of the 
two groups of microbial taxa, group A and group B, whose abun-
dance balance B(A,B) is most associated with an outcome of inter-
est Y. For instance, for a binary outcome Y corresponding to disease 
status (Y = 1 for diesased and Y = 0 for not diseased), if we are able 
to identify the two groups of taxa A and B whose balance is associ-
ated with Y we may use B(A,B), the relative abundance between 
groups A and B, as a microbial signature of disease risk. If large val-
ues of B(A,B) are associated with Y = 1, we will infer that a person 
with larger relative abundances of group A with respect to group B 
will have higher risk of disease than other people with lower relative 
abundances between A and B. 

B(A,B)= C log

j! I
%
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1

i ! I
%
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The algorithm for the selection of microbial balances is imple-
mented in the R package selbal. It starts with a first thorough search 
of the two taxa whose balance, or log-ratio, is most associated with 
the response variable. Once the first two-taxon balance is selected, 
the algorithm performs a forward selection process where, at each 
step, a new taxon is added to the existing balance such that the spec-
ified optimization criterion is improved (area under the receiver 
operating characteristic or mean squared error). The algorithm 
stops when there is no additional variable that improves the current 
optimization parameter or when the maximum number of compo-
nents to be included in the balance is achieved. This number is es-
tablished with a cross-validation procedure, which is also used to 
explore the robustness of the identified balance.  

Discussion 

In this work we present some of the techniques that are most com-
monly used for microbiome analysis. We place a particular empha-
sis on those methods that preserve the principles of compositional 
data analysis. 

Classical methods that ignore the compositional nature of micro-
biome data can result in spurious correlations and sub-composi-
tional incoherencies. This is especially relevant for classical univari-
ate test where the strong dependencies between microbial abun-
dances results in an important increase of type I error. Simulation 
studies show that the false discovery rate increases as the true-posi-
tive fold change increases and that it can achieve unacceptable ex-
tremely large values [17,33]. Moreover, from a biological point of 
view univariate approaches are questionable because they ignore 
that the microbiome is an ecosystem with complex interactions be-
tween its members and with the environment. 

There is an increasing awareness of the need of using proper 
CoDA methods for microbiome analysis [10,38]. In this work we 
make clear that proper CoDA methods are available for all steps of 
a microbiome statistical analysis: normalization, diversity analysis, 
ordination and differential abundance testing, both, multivariate 
and univariate. 

Normalization is not required and only zero imputation is need-
ed. Diversity analysis and ordination can be performed after clr or 
ilr transformations, for instance, Aitchison distance and PCA. 
CoDA adapted Kernel machine regression can be used for multi-
variate differential abundance testing. Univariate approaches are 
not recommended. Penalized multivariate regression, such as sPLS-
DA, is an alternative for the identification of the taxa that are most 
associated with the outcome. The algorithm selbal for the selection 
of microbial signatures is also an alternative to univariate selection 
of taxa when the main interest is prediction. 

Even so, more research is still needed to fully understand the per-
formance and limitations of the current available CoDA methods 
for microbiome analysis that will probably lead to their improve-
ment or to the proposal of new approaches. 
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