• 제목/요약/키워드: High-strength bolt

검색결과 165건 처리시간 0.024초

Static behavior of bolt connected steel-concrete composite beam without post-cast zone

  • Xing, Ying;Zhao, Yun;Guo, Qi;Jiao, Jin-feng;Chen, Qing-wei;Fu, Ben-zhao
    • Steel and Composite Structures
    • /
    • 제38권4호
    • /
    • pp.365-380
    • /
    • 2021
  • Although traditional steel-concrete composite beams have excellent structural characteristics, it cannot meet the requirement of quick assembly and repair in the engineering. This paper presents a study on static behavior of bolt connected steel-concrete composite beam without post-cast zone. A three-dimensional finite element model was developed with its accuracy and reliability validated by available experimental results. The analysis results show that in the normal service stage, the bolt is basically in the state of unidirectional stress with the loss of pretightening can be ignored. Parametric studies are presented to quantify the effects of the post-cast zone, size and position of splicing gap on the behavior of the beam. Based on the studies, suggested size of gap and installation order were proposed. It is also confirmed that optimized concrete slab in mid-span can reduce the requirement of construction accuracy.

고강도 강관을 적용한 SP-록볼트 개발 및 현장 적용을 위한 연구 (A study on the development and field application of SP-Rockbolt with high-strength steel pipe)

  • 신현강;정혁상;안동욱
    • 한국터널지하공간학회 논문집
    • /
    • 제19권4호
    • /
    • pp.651-668
    • /
    • 2017
  • 터널 굴착에 따른 초기 안정성 확보를 위해 1차 지보재인 숏크리트와 록볼트를 가장 적절한 시기에 터널 굴착면 주면으로 타설하여야 한다. 이러한 지보재의 역할은 장 단기적인 터널 안정성에 매우 중요한 역할을 하기 때문이다. 여기서 록볼트는 터널 굴착시 응력이완에 따라 발생되는 외압을 축력으로 받아들여 터널 굴착면의 숏크리트에 전달하여 전체적인 안정성을 도모하는 중요한 지보재이다. 현재까지 록볼트의 재료는 현장 수급이 유리한 이형강봉을 많이 이용하였으나 최근들어 불확실한 품질의 중국산 자재의 시장진입과 록볼트 주면 모르타르 충전시 흘러내림에 의한 밀실한 충전불량, 용수에 의한 부식 등 다양한 문제점이 나타나고 있다. 특히, 현재의 설계기준상 이형강봉에 대한 기계적 성질의 기준은 있으나 그 외 섬유보강 플라스틱(FRP) 등이 사용될 수 있으나 명확한 기준은 제시되지 않고 있다. 그래서 새로운 소재로 개발되더라도 실제 현장 적용에 있어서는 해결해야 할 부분이 많다. 따라서, 본 연구에서는 상기의 기존 록볼트가 지니고 있는 여러 문제점을 해결, 개선하고자 Autobeam 재료를 이용한 고강도 강관 록볼트(Samrt Pipe-록볼트, 이하 SP-록볼트)를 개발한 내용을 다루고 있다. 개발된 록볼트의 성능평가를 위해 현장시험을 수행하고, 기존 모르타르 충전을 개선할 수 있는 충전재를 개발하여 록볼트의 성능을 더욱 향상하고자 하였다. 또한, 실무현장의 적용성 확보를 위해 설계 및 시공기준에 대한 연구를 수행하였다.

고장력볼트 냉간압조용 비조질강 특성에 관한 연구 (Mechanical properties and workability of micro-alloyed steel on cold forming of high tension bolt)

  • 이영선;최정묵;황범규;정택우;문영훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.132-136
    • /
    • 2009
  • The importance and interests for saving of energy and cost in industry has been steadily grown up. Therefore, process optimization to reduce the processing step and energy is one of the most important things. The micro-alloyed steel of which post-heat-treatment is not necessary, has attractive points for high strength materials. However, for the application of non-heat-treated steel to structural parts, it is necessary to confirm the reliability of mechanical properties. In order to estimate mechanical properties. The microstructure, hardness, tensile strength, compressive strength and tensile fatigue strength of micro-alloyed steel having 900MPa tensile strength has been investigated.

  • PDF

Experimental investigation of force-distribution in high-strength bolts in extended end-plate connections

  • Abdalla, K.M.;Abu-Farsakh, G.A.R.;Barakat, S.A.
    • Steel and Composite Structures
    • /
    • 제7권2호
    • /
    • pp.87-103
    • /
    • 2007
  • This paper presents some of the results from an experimental research project on the behavior of extended end-plate connections subjected to moment conducted at the Structural Laboratory of Jordan University of Science and Technology. Since the connection behavior affects the structural frame response, it must be included in the global analysis and design. In this study, the behavior of six full-scale stiffened and unstiffened cantilever connections of HEA- and IPE-sections has been investigated. Eight high strength bolts were used to connect the extended end-plate to the column flange in each case. Strain gauges were installed inside each of the top six bolts in order to obtain experimentally the actual tension force induced within each bolt. Then the connection behavior is characterized by the tension force in the bolt, extended end-plate behavior, moment-rotation relation, and beam and column strains. Some or all of these characteristics are used by many Standards; therefore, it is essential to predict the global behavior of column-beam connections by their geometrical and mechanical properties. The experimental test results are compared with two theoretical (equal distribution and linear distribution) approaches in order to assess the capabilities and accuracy of the theoretical models. A simple model of the joint is established and the essential parameters to predict its strength and deformational behavior are determined. The equal distribution method reasonably determined the tension forces in the upper two bolts while the linear distribution method underestimated them. The deformation behavior of the tested connections was characterized by separation of the column-flange from the extended end-plate almost down to the level of the upper two bolts of the lower group and below this level the two parts remained in full contact. The neutral axis of the deformed joint is reasonably assumed to pass very close to the line joining the upper two bolts of the lower group. Smooth monotonic moment-rotation relations for the all tested frames were observed.

인발성형 시스템 고도화를 위한 특수합금 육각봉의 압연특성 비교 해석 연구 (Comparative Study on Rolling Characteristics of Hexagonal Bar with Special Alloy for Advancing Drawing System)

  • 이영식;양영준
    • 한국기계가공학회지
    • /
    • 제20권5호
    • /
    • pp.96-102
    • /
    • 2021
  • Hexagonal bolt, nut, fittings, and high-pressure valves with special alloy play an important role in many industrial products. Numerical analysis was conducted to obtain data for designing a new drawing system. This study aims to predict the rolling force of the new drawing system compared to that of the established drawing system. The rolling force of the new drawing system was predicted using numerical analysis by assuming that it is in proportion to deformation. The rolling forces of Mo, Ti, and W were approximately 1.4, 0.5, and 2.5 times those of SUS. Because the values of ultimate strength of special alloys were more close to numerical analysis, the values of ultimate strength could be used to predict the rolling force of the new drawing system without numerical analysis in field.

소성 가공 해석을 통한 티타늄 합금 볼트 열간 단조 공정 분석 (Titanium alloy bolt hot forging process analysis through plastic working analysis)

  • 최두선;김태민;항봉석;한유진;고강호;박정래;박규백;이정우;김도언
    • Design & Manufacturing
    • /
    • 제14권1호
    • /
    • pp.42-48
    • /
    • 2020
  • Titanium alloy has been in the spotlight as a core material in high-tech industries that require high strength and light weight because it has excellent strength and corrosion resistance and strength is higher than that of steel. Therefore, in various industries, existing steel products are intended to be replaced with titanium alloys. Titanium alloys can cause cutting tool breakage during cutting, and heat generated during cutting does not dissipate, accumulates in tools and workpieces, resulting in large wear and tear on thin workpieces. In addition, since titanium alloy is a metal with high chemical activity, the wear of the tool becomes more severe when the cutting speed is high, so machining of titanium bolt through cutting is very disadvantageous in terms of productivity. Therefore, the production of bolts using titanium alloys is being produced through a forging process to improve productivity and product quality. In this paper, hot forging molding analysis was performed on bolts used for fastening automobile parts using Ti-6Al-4V alloy, which is the most commonly used titanium alloy.

반복재하 실험에 의한 고력볼트 철골 보 이음부의 내진거동 연구 (Cyclic Seismic Performance of High-Strength Bolted-Steel Beam Splice)

  • 이철호
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.57-64
    • /
    • 1998
  • This paper presents the cyclic seismic performance of slip-critically designed, high-strength bolted-beam splice in steel moment frame. Before the moment connection reaching its plastic strength, unexpected premature slippage occurred at the slip-critically designed beam splice during the test. The experimentally observed frictional coefficients were as low as about 50% to 60% of nominal (code) value. Nevertheless, the bearing type behavior mobilized after the slippage transferred the increasing cyclic loads successfully, i.e., the consequence of slippage into bearing was not catastrophic to the connection behavior. The test result seems to indicate that the traditional beam splice design basing upon (bolt-hole deducted) effective flange area criterion may not be sufficient in developing the plastic strength of moment connections under severe earthquake loading. New procedure for achieving slip-critical beam splice design is proposed based on capacity design concept.

  • PDF

Elastoplastic FEM analysis of earthquake response for the field-bolt joints of a tower-crane mast

  • Ushio, Yoshitaka;Saruwatari, Tomoharu;Nagano, Yasuyuki
    • Advances in Computational Design
    • /
    • 제4권1호
    • /
    • pp.53-72
    • /
    • 2019
  • Safety measures for tower cranes are extremely important among the seismic countermeasures at high-rise building construction sites. In particular, the collapse of a tower crane from a high position is a very serious catastrophe. An example of such an accident due to an earthquake is the case of the Taipei 101 Building (the author was the project director), which occurred on March 31, 2002. Failure of the bolted joints of the tower-crane mast was the direct cause of the collapse. Therefore, it is necessary to design for this eventuality and to take the necessary measures on construction sites. This can only be done by understanding the precise dynamic behavior of mast joints during an earthquake. Consequently, we created a new hybrid-element model (using beam, shell, and solid elements) that not only expressed the detailed behavior of the site joints of a tower-crane mast during an earthquake but also suppressed any increase in the total calculation time and revealed its behavior through computer simulations. Using the proposed structural model and simulation method, effective information for designing safe joints during earthquakes can be provided by considering workability (control of the bolt pretension axial force and other factors) and less construction cost. Notably, this analysis showed that the joint behavior of the initial pretension axial force of a bolt is considerably reduced after the axial force of the bolt exceeds the yield strength. A maximum decrease of 50% in the initial pretension axial force under the El Centro N-S Wave ($v_{max}=100cm/s$) was observed. Furthermore, this method can be applied to analyze the seismic responses of general temporary structures in construction sites.

Study on seismic performance of connection joint between prefabricated prestressed concrete beams and high strength reinforcement-confined concrete columns

  • Jiang, Haotian;Li, Qingning;Jiang, Weishan;Zhang, De-Yi
    • Steel and Composite Structures
    • /
    • 제21권2호
    • /
    • pp.343-356
    • /
    • 2016
  • As the common cast-in-place construction works fails to meet the enormous construction demand under rapid economic growth, the development of prefabricated structure instead becomes increasingly promising in China. For the prefabricated structure, its load carrying connection joint play a key role in maintaining the structural integrity. Therefore, a novel end plate bolt connecting joint between fully prefabricated pre-stressed concrete beam and high-strength reinforcement-confined concrete column was proposed. Under action of low cycle repeated horizontal loadings, comparative tests are conducted on 6 prefabricated pre-stressed intermediate joint specimens and 1 cast-in-place joint specimen to obtain the specimen failure modes, hysteresis curves, skeleton curves, ductility factor, stiffness degradation and energy dissipation capacity and other seismic indicators, and the seismic characteristics of the new-type prefabricated beam-column connecting joint are determined. The test results show that all the specimens for end plate bolt connecting joint between fully prefabricated pre-stressed concrete beam and high-strength reinforcement-confined concrete column have realized the design objectives of strong column weak beam. The hysteretic curves for specimens are good, indicating desirable ductility and energy dissipation capacity and seismic performances, and the research results provide theoretical basis and technical support for the promotion and application of prefabricated assembly frames in the earthquake zone.

실내환경과 건설현장 온도변수를 고려한 고력볼트 체결력 예측 (Estimation on Clamping Force of High Strength Bolts Considering Temperature Variable of Both Site conditions and Indoor Environments)

  • 나환선;이현주
    • 복합신소재구조학회 논문집
    • /
    • 제6권3호
    • /
    • pp.32-40
    • /
    • 2015
  • The torque shear high strength bolt is clamped normally at the break of pin-tail specified. However, the clamping forces on slip critical connections do not often meet the required tension, as it considerably fluctuates due to torque coefficient dependent on lubricant affected temperature. In this study, the clamping tests of torque shear bolts were conducted independently at indoor conditions and at construction site conditions. During last six years, temperature of candidated site conditions was recorded from $-11^{\circ}C$ to $34^{\circ}C$. The indoor temperature condition was ranged from $-10^{\circ}C$ to $50^{\circ}C$ at each $10^{\circ}C$ interval. As for site conditions, the clamping force was reached in the range from 159 to 210 kN and the torque value was from 405 to $556 N{\cdot}m$. The range of torque coefficient at indoor conditions was analyzed from 0.126 to 0.158 while tensions were indicated from 179 to 192 kN. The torque coefficient at site conditions was ranged from 0.118 to 0.152. Based on this test, the variable trends of torque coefficient, tension subjected temperature can be taken by statistic regressive analysis. The variable of torque coefficient under the indoor conditions is $0.13%/^{\circ}C$ while it reaches $2.73%/^{\circ}C$ at actual site conditions. When the indoor trends and site conditions is combined, the modified variable of torque coefficient can be expected as $0.2%/^{\circ}C$. and the modified variable of tension can be determined as $0.18%/^{\circ}C$.