• Title/Summary/Keyword: High-rise Building

Search Result 1,780, Processing Time 0.037 seconds

Capturing the Underlying Structure of a 'Segment-line' City: Its Configurational Evolution and Functional Implications

  • Ling, Michelle Xiaohong
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.2
    • /
    • pp.139-147
    • /
    • 2017
  • Analyzing morphological evolution over a long period of time is deemed an effective way to identify problems occurring in the process of urban development, in addition to achieving a fundamental understanding of socio-cultural changes and growth rooted from the context. As far as the urban morphology is concerned, Hong Kong is characterized by its unique high-density and compact layout patterns, which have aroused the interest of a number of authors in the urban design domain. Whilst an increasing number of redevelopment projects in Hong Kong were criticized for ignoring and destroying the old urban fabric, there is a need for research to investigate the origins and changes of various urban patterns and their implications for society. By employing the theories and techniques of space syntax, this paper accordingly provides a morphological analysis based on the Wanchai District - a 'Segment-line' city, which particularly epitomizes various urban grids of Hong Kong and may have different implications for functional aspects. By axial-mapping the urban layouts of five stages of growth since 1842 and subsequently investigating their spatial and functional transformation over the past 170 years, this paper identifies a series of spatial characteristics underlying different grid patterns, as well as achieves a precise understanding of their ever changing relationship. Based on these understandings, this paper intends to provide valuable reference and guidance for upcoming spatial development in Hong Kong and other regions.

The Temperature Distribution Analysis of Mold transformer (100kVA 주상용 몰드 변압기의 온도분포 해석)

  • Cho, Han-Goo;Lee, Un-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05b
    • /
    • pp.125-129
    • /
    • 2004
  • The mold transformers have been widely used in underground substations in large building and have some advantages in comparison to oil-transformer, that is low fire risk, excellent environmental compatibility, compact size and high reliability. In addition, the application of mold transformer for outdoor is possible due to development of epoxy resin. The mold transformer generally has cooling duct between low voltage coil and high voltage coil. A mold transformer made by one body molding method has been developed for small size and low loss, but it needs some cooling method because heat radiation between each winding is difficult. The life of transformer is significantly dependent on the thermal behavior in windings. Many transformer designers have calculated temperature distribution and hot spot point by FEM(finite element method) to analyze winding temperature rise. In this paper, the temperature distribution and thermal stress analysis of 100kVA pole cast resin transformer for power distribution are investigated by FEM program.

  • PDF

A Study on the Prediction of Residual Strength of Concrete Filled Steel Tube Column without Fire Protective Coating by Unstressed Heating (비재하 가열에 의한 무내화피복 CFT 기둥의 잔존내력 예측에 관한 연구)

  • Kim, Gyu-Yong;Lee, Hyoung-Jun;Lee, Tae-Gyu;Kim, Young-Sun;Kang, Sun-Jong
    • Fire Science and Engineering
    • /
    • v.23 no.3
    • /
    • pp.31-39
    • /
    • 2009
  • Recently, fire resistance in high-rise building is becoming major problem socially. So it is need of hour to study on fire resistance in buildings. This study estimates fire resistance performance to utilized CFT (Concrete filled steel tube, below CFT) column in the high structure. But it is difficult quantitative evaluation about fire resistant performance of CFT. Therefore, this study made CFT specimen that determine the factor which is strength of concrete and then CFT column was exposed to heating controlled as closely as possible the ISO-834 standard fire curve. Also, tried to analyze internal temperature through nonlinear transient heat flow analysis. And, presumed extant compressive strength on the basis of this.

Assessment of the swelling potential of Baghmisheh marls in Tabriz, Iran

  • Asghari-Kaljahi, Ebrahim;Barzegari, Ghodrat;Jalali-Milani, Shahrokh
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.267-275
    • /
    • 2019
  • Tabriz is a large Iranian city and the capital of the East Azerbaijan province. The bed rock of this city is mainly consisted of marl layers. Marl layers have some outcrops in the northern and eastern parts of city that mainly belong to the Baghmisheh formation. Based on their colors, these marls are classified into three types: yellow, green, and gray marls. The city is developing toward its eastern side wherein various civil projects are under construction including tunnels, underground excavation, and high-rise building. In this regard, the swelling behavior assessment of these marls is of critical importance. Also, in lightweight structures with foundation pressure less than swelling pressure, several problems such as walls cracking and jamming of door and windows may occur. In the present study, physical properties and swelling behavior of Baghmisheh marls are investigated. According to the X-ray diffractometer (XRD) results, the marls are mainly composed of Illite, Kaolinite, Montmorillonite, and Chloride minerals. Type and content of clay minerals and initial void ratio have a decisive role in swelling behavior of these marls. The swelling potential of these marls was investigated using one-dimensional odometer apparatus under stress level up to 10 kPa. The results showed that yellow marls have high swelling potential and expansibility compared to the other marls. In addition, green and gray marls showed intermediate and low swelling potential and swelling pressure, respectively.

Compressive Behaviour of Geopolymer Concrete-Filled Steel Columns at Ambient and Elevated Temperatures

  • Tao, Zhong;Cao, Yi-Fang;Pan, Zhu;Hassan, Md Kamrul
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.4
    • /
    • pp.327-342
    • /
    • 2018
  • Geopolymer concrete (GPC), which is recognised as an environmentally friendly alternative to ordinary Portland cement (OPC) concrete, has been reported to possess high fire resistance. However, very limited research has been conducted to investigate the behaviour of geopolymer concrete-filled steel tubular (GCFST) columns at either ambient or elevated temperatures. This paper presents the compressive test results of a total of 15 circular concrete-filled steel tubular (CFST) stub columns, including 5 specimens tested at room temperature, 5 specimens tested at elevated temperatures and the remaining 5 specimens tested for residual strength after exposure to elevated temperatures. The main variables in the test program include: (a) concrete type; (b) concrete strength; and (c) curing condition of geopolymer concrete. The test results demonstrate that GCFST columns have similar ambient temperature behaviour compared with the conventional CFST counterparts. However, GCFST columns exhibit better fire resistance than the conventional CFST columns. Meanwhile, it is found that the GCFST column made with heat cured GPC has lower strength loss than other columns after exposure to elevated temperatures. The research results highlight the possibility of using geopolymer concrete to improve the fire resistance of CFST columns.

An Experimental Study on the Manufacture Ultra-High Strength Concrete of 1800kg/$\textrm{cm}^2$ Compressive Strength (Part I The Experimental Program and Preliminary Experiment) (압축강도 1800kg/$\textrm{cm}^2$의 초고강도콘크리트 개발에 관한 실험적 연구 (제1보 실험계획 및 예비실험))

  • 김규용;김진만;이상수;남상일;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.167-170
    • /
    • 1994
  • To reduce the size of structural members, high strength concrete has recently been utilized for structure such as ultra-high-rise buildings and prestressed concrete bridges in North America, and its compressive strength has gone up to 1300kg/$\textrm{cm}^2$. In Japan, research on high-strength concrete has been undertaken on a large scale by the national enterprise so-called New RC Project. And high-strength concrete with a design compressive strength over 450kg/$\textrm{cm}^2$ has recently been employed for high rised reinforced concrete building. As a result of the serious land availability situation of metropolitan areas in the world, buildings will become taller, and even higher strengths will be required. In the future, the utilization of high-strength concrete will spread widely through the development of new structural concepts, application of steels of a higher yield stress, silica fume, and other new materials. Considering these circumstance, the aim of this experimental study is to develop ultra-high-strength concrete with compressive strength over 1800kg/$\textrm{cm}^2$ with domestic current materials. There are so many factors which influence the manufacturing of ultra-high-strength concrete. The experimental factors selected in this study are mixing methods, curing methods, water-binder ratio, maximum size of coarse by silica fume. The results of this experimental study show that it is possible to develop the ultra-high-strength concrete with compressive strength over 1700kg/$\textrm{cm}^2$ at 28days, 1800kg/$\textrm{cm}^2$ at 56 days.

  • PDF

An Experimental Study on the Manufacture Ultra-High Strength Concrete of 1800kg/$\textrm{cm}^2$ Compressive Strength (Part 2 The Experiment on the Manufacture of the U.H.S Concrete) (압축강도 1800kg/$\textrm{cm}^2$의 초고강도콘크리트 개발에 관한 실험적 연구 (제2보 초고강도콘크리트의 제조에 관한 실험))

  • 남상일;김진만;최민수;김규용;최희용;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.171-174
    • /
    • 1994
  • To reduce the size of structural members, high strength concrete has recently been utilized for structure such as ultra-high-rise buildings and prestressed concrete bridges in North America, and its compressive strength has gone up to 1300kg/$\textrm{cm}^2$. In Japan, research on high-strength concrete has been undertaken on a large scale by the national enterprise so-called New RC Project. And high-strength concrete with a design compressive strength over 450kg/$\textrm{cm}^2$ has recently been employed for high rised reinforced concrete building. As a result of the serious land availability situation of metropolitan areas in the world, buildings will become taller, and even higher strengths will be required. In the future, the utilization of high-strength concrete will spread widely through the development of new structural concepts, application of steels of a higher yield stress, silica fume, and other new materials. Considering these circumstance, the aim of this experimental study is to develop ultra-high-strength concrete with compressive strength over 1800kg/$\textrm{cm}^2$ with domestic current materials. There are so many factors which influence the manufacturing of ultra-high-strength concrete. The experimental factors selected in this study are mixing methods, curing methods, water-binder ratio, maximum size of coarse by silica fume. The results of this experimental study show that it is possible to develop the ultra-high-strength concrete with compressive strength over 1700kg/$\textrm{cm}^2$ at 28days, 1800kg/$\textrm{cm}^2$ at 56 days.

  • PDF

A Numerical Analysis Study for Estimation of Ultimate Bearing Capacity and An Analysis of the High Capacity Bi-directional Pile Load Tests of the Large-diameter Drilled Shafts (대구경 현장타설말뚝의 대용량 양방향 말뚝재하시험 분석 및 극한지지력 추정을 위한 수치해석 연구)

  • Nam, Moonsuk;Kim, Sangil;Hong, Seokwoo;Hwang, Seongchun;Choi, Yongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.10
    • /
    • pp.63-72
    • /
    • 2011
  • The high capacity bi-directional pile load test is an optimum pile load test method for high-rised buildings. Especially, a high pressure and double-acting bi-directional pile load testing, a special type of the high capacity bi-directional pile load test, is the most practical way to overcome limitations of loading capacities and constraints of field conditions, which was judged to be a very useful test method for requiring high loading capacities. Total of 2 high capacity bi-directional pile load tests(P-1 and P-2) were conducted in high-rised building sites in Korea. Based on the field load test results, the sufficiency ratio of loading capacities to design loads for P-1 and P-2 were 3.3 and 2.1, respectively. For P-2, the load test could not verify the design load if 1-directional loads applied slightly smaller than the actual applied load. Also, high capacity bi-directional pile load tests were difficult to determine an ultimate state of ground or piles, although the loads were applied until their maximum loads. Hence, finite element analyses were conducted to determine their ultimate states by calibrating and extrapolate with test results.

An Analysis of the Relationship Between Resettlement and Housing Redevelopment Characteristics (주택재개발사업 특성이 재입주에 미치는 영향)

  • Ko Duk Kyun;Kim Hong-Kyu
    • Journal of the Korean housing association
    • /
    • v.16 no.3
    • /
    • pp.101-107
    • /
    • 2005
  • The reason that compulsory removals of a low-quality housing redevelopment such as involuntary or unintentional migration present a problem for urban communities is that whether involuntary movers adapt themselves to their new home has an influence on the urban communities that surround them. Moreover, involuntary emigrants have higher probability of choosing faulty residential areas than voluntary emigrants do. This gives rise to a problem of another residential migration for involuntary movers. In order to solve these problems, there is a need for a new housing policy that enables original residents to come back to their old community. However studies for resettlement had not conducted subjects about housing redevelopment characteristics which influences the involuntary movers directly. Instead personal microscopic characteristics such as statistics of resettlement, the moving distance, the reason of moving, improvement of living environment, had been main subjects of farmer studies. So the purpose of this study is to analyze an analysis of the relationship between resettlement and housing redevelopment characteristics. The data used in this study was obtained at 47 areas designated by Seoul (metropolis) since 1990 for redevelopment. Cluster Analysis Is used for dividing high rate of resettlement with low rate of resettlement and Regression Analysis is used for the analysis of the relationship between resettlement and housing redevelopment characteristics. The results of examining the effects of a redeveloped housing complex on returning residents at 47 areas designated by Seoul (metropolis) since 1990 fur redevelopment are as follows: First, A housing complex with a high returning rate (remove-in rate?) has no state/public land, unauthorized building owners who are in the low-income brackets, and few interested parties such as union members. This is the characteristic of a redeveloped housing complex with a short-period project span. On the contrary, a housing complex that has a low returning rate is crowded by state/public land, and numerous unauthorized building owners, and interested parties. Second, According to the linear regression analysis, among the factors that affect returning residents, 'physical properties(characteristics) of a region', 'population properties within a region', and 'properties of a project span' indicate a negative(-)influence whereas 'properties of a complex density' shows a positive(+) influence. In a nutshell, the more the physical properties, population properties, projectspan properties, the lower the returning rate and the more the complex density properties, the higher the returning rate. In detail, an area with many small land and new/large buildings, a high population, and a long project duration has a low returning rate of original residents while an area holding large capacity and buildings with many number of floors (multiple-storied building) has a high returning rate.

A Study on the Properties of Fire Endurance and Spalling of High Performance RC Column with the Finishing and Covering Material (고성능 RC 기둥의 마감재 변화에 따른 폭열 및 내화특성에 관한 연구)

  • Han, Cheon-Goo;Hwang, Yin-Seong;Ji, Suk-Won;Kim, Kyoung-Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.143-152
    • /
    • 2006
  • High performance concrete(HPC) has been widely used in high-rise building. The HPC has several benefits including high strength, high fluidity and high durability. However, spalling is susceptible to occur in HPC and HPC also tends to be deteriorated in the side of fire resistance performance at fire. This paper investigated the spalling prevention of high performance RC column. Control concrete showed severe failure and a case of concrete with fire enduring spraying material exhibited more severe spalling failure than even control concrete. In addition, concrete with fire enduring paint reported the most favorable spalling resistance effect for preventing spall, compared with other concrete covered with finishing materials, such as fire enduring spraying material, gypsum board, marble board and fire enduring PC board. Meanwhile, concrete adding 0.1% of PP fiber demonstrated spalling resistance performance after 3hours load bearing test.