Browse > Article
http://dx.doi.org/10.21022/IJHRB.2018.7.4.327

Compressive Behaviour of Geopolymer Concrete-Filled Steel Columns at Ambient and Elevated Temperatures  

Tao, Zhong (Centre for Infrastructure Engineering, Western Sydney University)
Cao, Yi-Fang (Centre for Infrastructure Engineering, Western Sydney University)
Pan, Zhu (Centre for Infrastructure Engineering, Western Sydney University)
Hassan, Md Kamrul (Centre for Infrastructure Engineering, Western Sydney University)
Publication Information
International Journal of High-Rise Buildings / v.7, no.4, 2018 , pp. 327-342 More about this Journal
Abstract
Geopolymer concrete (GPC), which is recognised as an environmentally friendly alternative to ordinary Portland cement (OPC) concrete, has been reported to possess high fire resistance. However, very limited research has been conducted to investigate the behaviour of geopolymer concrete-filled steel tubular (GCFST) columns at either ambient or elevated temperatures. This paper presents the compressive test results of a total of 15 circular concrete-filled steel tubular (CFST) stub columns, including 5 specimens tested at room temperature, 5 specimens tested at elevated temperatures and the remaining 5 specimens tested for residual strength after exposure to elevated temperatures. The main variables in the test program include: (a) concrete type; (b) concrete strength; and (c) curing condition of geopolymer concrete. The test results demonstrate that GCFST columns have similar ambient temperature behaviour compared with the conventional CFST counterparts. However, GCFST columns exhibit better fire resistance than the conventional CFST columns. Meanwhile, it is found that the GCFST column made with heat cured GPC has lower strength loss than other columns after exposure to elevated temperatures. The research results highlight the possibility of using geopolymer concrete to improve the fire resistance of CFST columns.
Keywords
Concrete-filled steel tubes; Stub columns; Geopolymer concrete; Fire resistance; Residual strength;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Li, X., Bao, Y., Xue, N., Chen, G. (2017). "Bond strength of steel bars embedded in high-performance fiber-reinforced cementitious composite before and after exposure to elevated temperatures." Fire Saf. J., 92, 98-106.   DOI
2 Li, W., Luo, Z., Tao, Z., Duan, W.H., Shah, S.P. (2017). "Mechanical behavior of recycled aggregate concrete-filled steel tube stub columns after exposure to elevated temperatures." Constr. Build. Mat., 146, 571-581.   DOI
3 Mo, K.H., Alengaram, U.J., Jumaat, M.Z. (2016). "Structural performance of reinforced geopolymer concrete members: A review." Constr. Build. Mat., 120, 251-264.   DOI
4 Neville A.M. Properties of Concrete (Fifth Edition), Pearson Education Limited, Harlow, England, 2011.
5 Nguyen, K.T., Ahn, N., Le, T.A., Lee, K. (2016). "Theoretical and experimental study on mechanical properties and flexural strength of fly ash-geopolymer concrete." Constr. Build. Mater., 106, 65-77.   DOI
6 Noushini, A., Aslani, F., Castel, A., Gilbert, R.I., Uy, B., Foster, S. (2016). "Compressive stress-strain model for lowcalcium fly ash-based geopolymer and heat-cured Portland cement concrete." Cem. Concr. Compos., 73, 136-146.   DOI
7 Ozbakkaloglu, T., Xie, T. (2016). "Geopolymer concretefilled FRP tubes: Behavior of circular and square columns under axial compression." Comp. Part B: Eng., 96, 215-230.   DOI
8 Pan, Z., Sanjayan, J.G. (2012). "Factors influencing softening temperature and hot-strength of geopolymers." Cem. Con. Comp., 34(2), 261-264.   DOI
9 Pan, Z., Tao, Z., Cao, Y., Wuhrer, R., Murphy, T. (2018) "Compressive strength and microstructure of alkaliactivated fly ash/slag binders at high temperature." Cem. Con. Comp., 86, 9-18.   DOI
10 Shaikh, F., Vimonsatit, V. (2015). "Compressive strength of fly-ash-based geopolymer concrete at elevated temperatures." Fire Mat., 39(2), 174-188.   DOI
11 Tao, Z., Ghannam, M., Song, T.Y., Han, L.H. (2016). "Experimental and numerical investigation of concrete-filled stainless steel columns exposed to fire." J. Constr. Steel Res., 118, 120-134.   DOI
12 Shi, X.S., Wang, Q.Y., Zhao, X.L., Collins, F.G. (2015). "Structural behaviour of geopolymeric recycled concrete filled steel tubular columns under axial loading." Constr. Build. Mat., 81, 187-197.   DOI
13 Sumajouw, M., Rangan, B.V. Low-calcium fly ash-based geopolymer concrete: Reinforced beams and columns, Research Report GC 3, Faculty of Engineering, Curtin University of Technology, Perth, Australia, 2006.
14 Sumajouw, D., Hardjito, D., Wallah, S., Rangan, B. (2007). "Fly ash-based geopolymer concrete: Study of slender reinforced columns." J. Mat. Sci., 42(9), 3124-3130.   DOI
15 Tao, Z., Ghannam, M. (2013). "Heat transfer in concretefilled carbon and stainless steel tubes exposed to fire." Fire Saf. J., 61, 1-11.   DOI
16 Tao, Z., Wang, Z.B., Yu, Q. (2013). "Finite element modelling of concrete-filled steel stub columns under axial compression." J. Constr. Steel Res., 89, 121-131.   DOI
17 Tao, Z., Wang, X.Q., Uy, B. (2013). "Stress-strain curves of structural and reinforcing steels after exposure to elevated temperatures." J. Mater. Civ. Eng., 25(9), 1306-1316.   DOI
18 Tao, Z., Han, L.H. (2007). "Behaviour of fire-exposed concrete- filled steel tubular beam columns repaired with CFRP wraps." Thin-Walled Struct., 45(1), 63-76.   DOI
19 Thomas, R.J., Peethamparan, S. (2015). "Alkali-activated concrete: Engineering properties and stress-strain behavior." Constr. Build. Mat., 93, 49-56.   DOI
20 Vickers, L., Pan, Z., Tao, Z., Van Riessen, A. (2016). "In situ elevated temperature testing of fly ash based geopolymer composites." Fire Mat., 9(6), 445-458.
21 Yang, H., Han, L.H., Wang, Y.C. (2008). "Effects of heating and loading histories on post-fire cooling behaviour of concrete-filled steel tubular columns." J. Constr. Steel Res., 64(5), 556-570.   DOI
22 Wang, Y., Burgess, I., Wald, F., Gillie, M. Performance-based fire engineering of structures, CRC Press, Taylor & Francis Group, 2012.
23 Wang, W.H., Han, L.H., Li, W., Jia, Y.H. (2014). "Behavior of concrete-filled steel tubular stub columns and beams using dune sand as part of fine aggregate." Constr. Build. Mat., 51, 352-363.   DOI
24 Wang, Z.B., Tao, Z., Han, L.H., Uy, B., Lam, D., Kang, W.H. (2017). "Strength, stiffness and ductility of concrete-filled steel columns under axial compression." Eng. Struct., 135, 209-221.   DOI
25 Yang, Y.F., Cao, K., Wang, T.Z. (2013). "Experimental behavior of CFST stub columns after being exposed to freezing and thawing." Cold Regions Sci. Tech., 89, 7-21.   DOI
26 Yost, J.R., Radlinska, A., Ernst, S., Salera, M., Martignetti, N.J. (2013). "Structural behavior of alkali activated fly ash concrete. Part 2: structural testing and experimental findings." Mater. Struct., 46, 449-462.   DOI
27 Yu, X., Tao, Z., Song, T.Y. (2016). "Effect of different types of aggregates on the performance of concrete-filled steel tubular stub columns." Mater. Struct., 49(9), 3591-3605.   DOI
28 Ataei, A., Bradford, M.A., Liu, X. (2016). "Experimental study of composite beams having a precast geopolymer concrete slab and deconstructable bolted shear connectors." Eng. Struct., 114, 1-13.   DOI
29 ASTM C39, Sandard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, USA, 2001.
30 AS 3600-2001. Australian Standard, Concrete structures. Sydney, Australia, 2001.
31 Dattatreya, J.K., Rajamane, N.P., Sabitha, D., Ambily, P.S., Nataraja, M.C. (2011). "Flexural behaviour of reinforced geopolymer concrete beams." Int. J. Civ. Struct. Eng., 2 (1), 138-159.
32 Cao, Y., Tao, Z., Pan, Z., Murphy, T.D., Wuhrer, R. (2016). "Effect of calcium aluminate cement on workability and compressive strength of fly ash geopolymer mortar cured at ambient temperature." Proceedings of the 24th Australasian Conference on the Mechanics of Structures and Materials, Perth, Australia, 927-932.
33 Cao, Y.F., Tao, Z., Pan, Z., Wuhrer, R. (2018). "Effect of calcium aluminate cement on geopolymer concrete cured at ambient temperature." Constr. Build. Mat. 191, 242-252.   DOI
34 Collins, M.P., Mitchell, D., MacGregor, J.G. (1993). "Structural design considerations for high-strength concrete." ACI Concr. Int., 15 (5), 27-34.
35 EN 1998-1. Design of Structures for Earthquake Resistance - Part 1: General Rules, Seismic Actions and Rules for Buildings, European Committee for Standardization (CEN), Brussels, Belgium, 2004.
36 Han, L.H., Li, W., Bjorhovde, R. (2014). "Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members." J. Constr. Steel Res., 100, 211-228.   DOI
37 Espinos, A., Romero, M.L., Hospitaler, A., Pascual, A.M., Albero, V. (2015). "Advanced materials for concretefilled tubular columns and connections." Struct., 4, 105-113.   DOI
38 Ganesan, N., Abraham, R., Raj, S.D., Sasi, D. (2014). "Stress-strain behaviour of confined geopolymer conc-rete." Constr. Build. Mater., 73, 326-331.   DOI
39 Habert, G., Lacaillerie, J.D.E. De, Roussel, N. (2011). "An environmental evaluation of geopolymer based concrete production: reviewing current research trends." J. Clean. Prod., 19(11), 1229-1238.   DOI
40 Han, L.H., Yang, H., Cheng, S.L. (2002). "Residual strength of concrete filled RHS stub columns after exposure to high temperatures." Adv. Struct. Eng., 5(2), 123-134.   DOI
41 Hardjito, D., Wallah, S., Sumajouw, D., Rangan, B. (2004). "The stress-strain behaviour of fly ash-based geopolymer concrete." Developments in Mechanics of Structures and Materials., A A Balkema Publishers, The Netherlands, 831-834.
42 Hardjito, D., Wallah, S., Sumajouw, D., Rangan, B. (2005). "Introducing fly ash-based geopolymer concrete: Manufacture and engineering properties." Proceedings of the 30th Conference on Our World in Concrete and Structures, 271-278.
43 Huo, J., Zhang, J., Wang, Z., Xiao, Y. (2013). "Effects of sustained axial load and cooling phase on post-fire behaviour of reinforced concrete stub columns." Fire Saf. J., 59, 76-87.   DOI
44 ISO 834, Fire-resistance Tests - Elements of Building Construction - Part 1: General Requirements, International Standard ISO 834, Geneva, Switzerland, 1999.
45 Kodur, V., Phan, L. 92007. "Critical factors governing the fire performance of high strength concrete systems." Fire Saf. J., 42(6-7), 482-488.   DOI