DOI QR코드

DOI QR Code

Compressive Behaviour of Geopolymer Concrete-Filled Steel Columns at Ambient and Elevated Temperatures

  • Tao, Zhong (Centre for Infrastructure Engineering, Western Sydney University) ;
  • Cao, Yi-Fang (Centre for Infrastructure Engineering, Western Sydney University) ;
  • Pan, Zhu (Centre for Infrastructure Engineering, Western Sydney University) ;
  • Hassan, Md Kamrul (Centre for Infrastructure Engineering, Western Sydney University)
  • Published : 2018.12.01

Abstract

Geopolymer concrete (GPC), which is recognised as an environmentally friendly alternative to ordinary Portland cement (OPC) concrete, has been reported to possess high fire resistance. However, very limited research has been conducted to investigate the behaviour of geopolymer concrete-filled steel tubular (GCFST) columns at either ambient or elevated temperatures. This paper presents the compressive test results of a total of 15 circular concrete-filled steel tubular (CFST) stub columns, including 5 specimens tested at room temperature, 5 specimens tested at elevated temperatures and the remaining 5 specimens tested for residual strength after exposure to elevated temperatures. The main variables in the test program include: (a) concrete type; (b) concrete strength; and (c) curing condition of geopolymer concrete. The test results demonstrate that GCFST columns have similar ambient temperature behaviour compared with the conventional CFST counterparts. However, GCFST columns exhibit better fire resistance than the conventional CFST columns. Meanwhile, it is found that the GCFST column made with heat cured GPC has lower strength loss than other columns after exposure to elevated temperatures. The research results highlight the possibility of using geopolymer concrete to improve the fire resistance of CFST columns.

Keywords

HKCGBT_2018_v7n4_327_f0001.png 이미지

Figure 1. Sieve analysis of coarse and fine aggregates.

HKCGBT_2018_v7n4_327_f0002.png 이미지

Figure 2. Heating regimes.

HKCGBT_2018_v7n4_327_f0003.png 이미지

Figure 3. Split tube furnace.

HKCGBT_2018_v7n4_327_f0004.png 이미지

Figure 4. Stress-strain curves of steel.

HKCGBT_2018_v7n4_327_f0005.png 이미지

Figure 5. Failure modes of composite columns tested at room temperature.

HKCGBT_2018_v7n4_327_f0006.png 이미지

Figure 6. Comparison between N-ε curves of GCFST columns with different strength levels.

HKCGBT_2018_v7n4_327_f0007.png 이미지

Figure 7. Comparison between N-ε curves of GCFST columns with different curing regimes.

HKCGBT_2018_v7n4_327_f0008.png 이미지

Figure 8. Comparison between N-ε curves of GCFST and conventional CFST columns.

HKCGBT_2018_v7n4_327_f0009.png 이미지

Figure 9. Strength indexes of CFST columns.

HKCGBT_2018_v7n4_327_f0010.png 이미지

Figure 10. Compressive stiffness of CFST columns.

HKCGBT_2018_v7n4_327_f0011.png 이미지

Figure 11. Comparison of different ductility indexes.

HKCGBT_2018_v7n4_327_f0012.png 이미지

Figure 12. Axial load versus axial and lateral strain curves.

HKCGBT_2018_v7n4_327_f0013.png 이미지

Figure 13. Development of lateral-to-axial strain ratio for CFST columns.

HKCGBT_2018_v7n4_327_f0014.png 이미지

Figure 14. Comparison between measured and predicted N-ε curves for composite columns tested at room temperature.

HKCGBT_2018_v7n4_327_f0015.png 이미지

Figure 15. Tested specimens after exposure to elevated temperatures.

HKCGBT_2018_v7n4_327_f0016.png 이미지

Figure 16. N-ε curves of specimens after elevated temperature exposure.

HKCGBT_2018_v7n4_327_f0017.png 이미지

Figure 17. Comparison of different residual strength indexes.

HKCGBT_2018_v7n4_327_f0018.png 이미지

Figure 18. Compressive stiffness of CFST columns after exposure to elevated temperatures.

HKCGBT_2018_v7n4_327_f0019.png 이미지

Figure 19. Failed specimens under combined temperature and loading.

HKCGBT_2018_v7n4_327_f0020.png 이미지

Figure 20. Axial deformation versus time curves of CFST columns subjected to elevated temperatures.

Table 1. Chemical composition of fly ash and CAC

HKCGBT_2018_v7n4_327_t0001.png 이미지

Table 2. Proportions of concrete mixes

HKCGBT_2018_v7n4_327_t0002.png 이미지

Table 3. Summary of CFST stub column specimens

HKCGBT_2018_v7n4_327_t0003.png 이미지

Table 4. Compressive stiffness EA (kN)

HKCGBT_2018_v7n4_327_t0004.png 이미지

References

  1. ASTM C39, Sandard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, USA, 2001.
  2. AS 3600-2001. Australian Standard, Concrete structures. Sydney, Australia, 2001.
  3. Ataei, A., Bradford, M.A., Liu, X. (2016). "Experimental study of composite beams having a precast geopolymer concrete slab and deconstructable bolted shear connectors." Eng. Struct., 114, 1-13. https://doi.org/10.1016/j.engstruct.2015.10.041
  4. Cao, Y., Tao, Z., Pan, Z., Murphy, T.D., Wuhrer, R. (2016). "Effect of calcium aluminate cement on workability and compressive strength of fly ash geopolymer mortar cured at ambient temperature." Proceedings of the 24th Australasian Conference on the Mechanics of Structures and Materials, Perth, Australia, 927-932.
  5. Cao, Y.F., Tao, Z., Pan, Z., Wuhrer, R. (2018). "Effect of calcium aluminate cement on geopolymer concrete cured at ambient temperature." Constr. Build. Mat. 191, 242-252. https://doi.org/10.1016/j.conbuildmat.2018.09.204
  6. Collins, M.P., Mitchell, D., MacGregor, J.G. (1993). "Structural design considerations for high-strength concrete." ACI Concr. Int., 15 (5), 27-34.
  7. Dattatreya, J.K., Rajamane, N.P., Sabitha, D., Ambily, P.S., Nataraja, M.C. (2011). "Flexural behaviour of reinforced geopolymer concrete beams." Int. J. Civ. Struct. Eng., 2 (1), 138-159.
  8. EN 1998-1. Design of Structures for Earthquake Resistance - Part 1: General Rules, Seismic Actions and Rules for Buildings, European Committee for Standardization (CEN), Brussels, Belgium, 2004.
  9. Espinos, A., Romero, M.L., Hospitaler, A., Pascual, A.M., Albero, V. (2015). "Advanced materials for concretefilled tubular columns and connections." Struct., 4, 105-113. https://doi.org/10.1016/j.istruc.2015.08.006
  10. Ganesan, N., Abraham, R., Raj, S.D., Sasi, D. (2014). "Stress-strain behaviour of confined geopolymer conc-rete." Constr. Build. Mater., 73, 326-331. https://doi.org/10.1016/j.conbuildmat.2014.09.092
  11. Habert, G., Lacaillerie, J.D.E. De, Roussel, N. (2011). "An environmental evaluation of geopolymer based concrete production: reviewing current research trends." J. Clean. Prod., 19(11), 1229-1238. https://doi.org/10.1016/j.jclepro.2011.03.012
  12. Han, L.H., Li, W., Bjorhovde, R. (2014). "Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members." J. Constr. Steel Res., 100, 211-228. https://doi.org/10.1016/j.jcsr.2014.04.016
  13. Han, L.H., Yang, H., Cheng, S.L. (2002). "Residual strength of concrete filled RHS stub columns after exposure to high temperatures." Adv. Struct. Eng., 5(2), 123-134. https://doi.org/10.1260/1369433021502614
  14. Hardjito, D., Wallah, S., Sumajouw, D., Rangan, B. (2004). "The stress-strain behaviour of fly ash-based geopolymer concrete." Developments in Mechanics of Structures and Materials., A A Balkema Publishers, The Netherlands, 831-834.
  15. Hardjito, D., Wallah, S., Sumajouw, D., Rangan, B. (2005). "Introducing fly ash-based geopolymer concrete: Manufacture and engineering properties." Proceedings of the 30th Conference on Our World in Concrete and Structures, 271-278.
  16. Huo, J., Zhang, J., Wang, Z., Xiao, Y. (2013). "Effects of sustained axial load and cooling phase on post-fire behaviour of reinforced concrete stub columns." Fire Saf. J., 59, 76-87. https://doi.org/10.1016/j.firesaf.2013.04.002
  17. ISO 834, Fire-resistance Tests - Elements of Building Construction - Part 1: General Requirements, International Standard ISO 834, Geneva, Switzerland, 1999.
  18. Kodur, V., Phan, L. 92007. "Critical factors governing the fire performance of high strength concrete systems." Fire Saf. J., 42(6-7), 482-488. https://doi.org/10.1016/j.firesaf.2006.10.006
  19. Li, X., Bao, Y., Xue, N., Chen, G. (2017). "Bond strength of steel bars embedded in high-performance fiber-reinforced cementitious composite before and after exposure to elevated temperatures." Fire Saf. J., 92, 98-106. https://doi.org/10.1016/j.firesaf.2017.06.006
  20. Li, W., Luo, Z., Tao, Z., Duan, W.H., Shah, S.P. (2017). "Mechanical behavior of recycled aggregate concrete-filled steel tube stub columns after exposure to elevated temperatures." Constr. Build. Mat., 146, 571-581. https://doi.org/10.1016/j.conbuildmat.2017.04.118
  21. Mo, K.H., Alengaram, U.J., Jumaat, M.Z. (2016). "Structural performance of reinforced geopolymer concrete members: A review." Constr. Build. Mat., 120, 251-264. https://doi.org/10.1016/j.conbuildmat.2016.05.088
  22. Neville A.M. Properties of Concrete (Fifth Edition), Pearson Education Limited, Harlow, England, 2011.
  23. Nguyen, K.T., Ahn, N., Le, T.A., Lee, K. (2016). "Theoretical and experimental study on mechanical properties and flexural strength of fly ash-geopolymer concrete." Constr. Build. Mater., 106, 65-77. https://doi.org/10.1016/j.conbuildmat.2015.12.033
  24. Noushini, A., Aslani, F., Castel, A., Gilbert, R.I., Uy, B., Foster, S. (2016). "Compressive stress-strain model for lowcalcium fly ash-based geopolymer and heat-cured Portland cement concrete." Cem. Concr. Compos., 73, 136-146. https://doi.org/10.1016/j.cemconcomp.2016.07.004
  25. Ozbakkaloglu, T., Xie, T. (2016). "Geopolymer concretefilled FRP tubes: Behavior of circular and square columns under axial compression." Comp. Part B: Eng., 96, 215-230. https://doi.org/10.1016/j.compositesb.2016.04.013
  26. Pan, Z., Sanjayan, J.G. (2012). "Factors influencing softening temperature and hot-strength of geopolymers." Cem. Con. Comp., 34(2), 261-264. https://doi.org/10.1016/j.cemconcomp.2011.09.019
  27. Pan, Z., Tao, Z., Cao, Y., Wuhrer, R., Murphy, T. (2018) "Compressive strength and microstructure of alkaliactivated fly ash/slag binders at high temperature." Cem. Con. Comp., 86, 9-18. https://doi.org/10.1016/j.cemconcomp.2017.09.011
  28. Shaikh, F., Vimonsatit, V. (2015). "Compressive strength of fly-ash-based geopolymer concrete at elevated temperatures." Fire Mat., 39(2), 174-188. https://doi.org/10.1002/fam.2240
  29. Shi, X.S., Wang, Q.Y., Zhao, X.L., Collins, F.G. (2015). "Structural behaviour of geopolymeric recycled concrete filled steel tubular columns under axial loading." Constr. Build. Mat., 81, 187-197. https://doi.org/10.1016/j.conbuildmat.2015.02.035
  30. Sumajouw, M., Rangan, B.V. Low-calcium fly ash-based geopolymer concrete: Reinforced beams and columns, Research Report GC 3, Faculty of Engineering, Curtin University of Technology, Perth, Australia, 2006.
  31. Sumajouw, D., Hardjito, D., Wallah, S., Rangan, B. (2007). "Fly ash-based geopolymer concrete: Study of slender reinforced columns." J. Mat. Sci., 42(9), 3124-3130. https://doi.org/10.1007/s10853-006-0523-8
  32. Tao, Z., Ghannam, M., Song, T.Y., Han, L.H. (2016). "Experimental and numerical investigation of concrete-filled stainless steel columns exposed to fire." J. Constr. Steel Res., 118, 120-134. https://doi.org/10.1016/j.jcsr.2015.11.003
  33. Tao, Z., Ghannam, M. (2013). "Heat transfer in concretefilled carbon and stainless steel tubes exposed to fire." Fire Saf. J., 61, 1-11. https://doi.org/10.1016/j.firesaf.2013.07.004
  34. Tao, Z., Wang, Z.B., Yu, Q. (2013). "Finite element modelling of concrete-filled steel stub columns under axial compression." J. Constr. Steel Res., 89, 121-131. https://doi.org/10.1016/j.jcsr.2013.07.001
  35. Tao, Z., Wang, X.Q., Uy, B. (2013). "Stress-strain curves of structural and reinforcing steels after exposure to elevated temperatures." J. Mater. Civ. Eng., 25(9), 1306-1316. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000676
  36. Tao, Z., Han, L.H. (2007). "Behaviour of fire-exposed concrete- filled steel tubular beam columns repaired with CFRP wraps." Thin-Walled Struct., 45(1), 63-76. https://doi.org/10.1016/j.tws.2006.11.004
  37. Thomas, R.J., Peethamparan, S. (2015). "Alkali-activated concrete: Engineering properties and stress-strain behavior." Constr. Build. Mat., 93, 49-56. https://doi.org/10.1016/j.conbuildmat.2015.04.039
  38. Vickers, L., Pan, Z., Tao, Z., Van Riessen, A. (2016). "In situ elevated temperature testing of fly ash based geopolymer composites." Fire Mat., 9(6), 445-458.
  39. Wang, Y., Burgess, I., Wald, F., Gillie, M. Performance-based fire engineering of structures, CRC Press, Taylor & Francis Group, 2012.
  40. Wang, W.H., Han, L.H., Li, W., Jia, Y.H. (2014). "Behavior of concrete-filled steel tubular stub columns and beams using dune sand as part of fine aggregate." Constr. Build. Mat., 51, 352-363. https://doi.org/10.1016/j.conbuildmat.2013.10.049
  41. Wang, Z.B., Tao, Z., Han, L.H., Uy, B., Lam, D., Kang, W.H. (2017). "Strength, stiffness and ductility of concrete-filled steel columns under axial compression." Eng. Struct., 135, 209-221. https://doi.org/10.1016/j.engstruct.2016.12.049
  42. Yang, H., Han, L.H., Wang, Y.C. (2008). "Effects of heating and loading histories on post-fire cooling behaviour of concrete-filled steel tubular columns." J. Constr. Steel Res., 64(5), 556-570. https://doi.org/10.1016/j.jcsr.2007.09.007
  43. Yang, Y.F., Cao, K., Wang, T.Z. (2013). "Experimental behavior of CFST stub columns after being exposed to freezing and thawing." Cold Regions Sci. Tech., 89, 7-21. https://doi.org/10.1016/j.coldregions.2013.01.005
  44. Yost, J.R., Radlinska, A., Ernst, S., Salera, M., Martignetti, N.J. (2013). "Structural behavior of alkali activated fly ash concrete. Part 2: structural testing and experimental findings." Mater. Struct., 46, 449-462. https://doi.org/10.1617/s11527-012-9985-0
  45. Yu, X., Tao, Z., Song, T.Y. (2016). "Effect of different types of aggregates on the performance of concrete-filled steel tubular stub columns." Mater. Struct., 49(9), 3591-3605. https://doi.org/10.1617/s11527-015-0742-z