• Title/Summary/Keyword: High-repetition-rate pulses

Search Result 31, Processing Time 0.026 seconds

Theoretical Analysis on the Optimum Fluence for Copper Ablation with a 515 nm Picosecond Laser (515 nm 피코초 레이저를 이용한 구리 어블레이션 공정의 최적 에너지밀도에 대한 이론적 분석)

  • Shin, Dongsig;Cho, Yongkwon;Sohn, Hyonkee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.10
    • /
    • pp.1009-1015
    • /
    • 2013
  • Ultra-short laser pulses are effective, when high requirements concerning accuracy, surface roughness and heat affected zone are demanded for surface structuring. In particular, picosecond laser systems that are suited to be operated in industrial environments are of great interest for many practical applications. This paper focused on inducing optimum process parameters for higher volume ablation rate by analyzing a relationship between crater diameter and optical spot size. In detail, the dependency of the volume ablation rate, penetration depth and threshold fluence on the pulse duration 8 ps and wavelength of 515 nm was discussed. The experimental results showed that wavelength of 515 nm resulted in less threshold fluence ($0.075J/cm^2$) on copper than IR wavelength ($0.3J/cm^2$). As a result, it was possible that optimum fluence for higher volume ablation rate was achieved with $0.28J/cm^2$.

Direct write patterning of ITO film by Femtosecond laser ablations

  • Farson, Dave;Choi, Hae-Woon;Kim, Kwang-Ryul;Hong, Soon-Kug
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.583-588
    • /
    • 2005
  • Indium tin oxide (ITO) is a commonly used conducting transparent oxide film (CTO) used in flat panel display applications. Direct write laser ablation is sometimes employed for ITO patterning and it is important that the substrate material and remaining ITO be affected as little as possible by the laser ablation. In this investigation, femtosecond laser ablation of ITO was studied to identify laser processing parameters which cleanly ablated ITO with a minimum of damage to a glass substrate and surrounding ITO. The Ti:Sapphire chirp pulse amplified femtosecond laser used for the experiments had a wavelength of 775nm and produced pulses with a duration of 150fs at a rate of 2 kHz. Ablation was carried out at a sufficiently high panel scanning speed that single ablation spots could be studied. The pulse energy was adjusted to determine feasible spot diameters and depths which could be ablated into the ITO without damaging the glass substrate. Next, ablation of lines without glass damage was also demonstrated. Experiments were also performed with a high repetition rate (100kHz) femtosecond laser.

  • PDF

System Design and Performance Analysis of 3D Imaging Laser Radar for the Mapping Purpose (맵핑용 3차원 영상 레이저 레이다의 시스템 설계 및 성능 분석)

  • La, Jongpil;Ko, Jinsin;Lee, Changjae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.90-95
    • /
    • 2014
  • The system design and the system performance analysis of 3D imaging laser radar system for the mapping purpose is addressed in this article. For the mapping, a push-bloom scanning method is utilized. The pulsed fiber laser with high pulse energy and high pulse repetition rate is used for the light source of laser radar system. The high sensitive linear mode InGaAs avalanche photo-diode is used for the laser receiver module. The time-of-flight of laser pulse from the laser to the receiver is calculated by using high speed FPGA based signal processing board. To reduce the walk error of laser pulse regardless of the intensity differences between pulses, the time of flight is measured from peak to peak of laser pulses. To get 3D image with a single pixel detector, Risley scanner which stirs the laser beam in an ellipsoidal pattern is used. The system laser energy budget characteristics is modeled using LADAR equation, from which the system performances such as the pulse detection probability, false alarm and etc. are analyzed and predicted. The test results of the system performances are acquired and compared with the predicted system performance. According to test results, all the system requirements are satisfied. The 3D image which was acquired by using the laser radar system is also presented in this article.

Pulsed Power System for Leachate Treatment Application (침출수 처리 응용 펄스전원 시스템)

  • Jang, S.R.;Ahn, S.H.;Ryoo, H.J.;Rim, G.H.
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.246-247
    • /
    • 2010
  • This paper deals with the water treatment of the leachate from sewage filled ground by a pulsed power technology. Leachate from sewage filled ground should be treated below regulation level of COD in order to prevent environmental pollution and usually treated by a chemical method. Among the pollutants mixed in the leachate, chemical compounds of benzene series are known to be difficult to break down, and need to use high cost treat methods. The treatment of the benzene compounds by high power pulsed power supply was studied. For the high-rate, cost-effective treatment of leachate, pulsed power supply should have high repetition rates and require switching devices of long lifetime. In order to meet the demands of the above condition, pulsed power generator based on semiconductor switches using IGBTs as primary switches were developed. The experimental results verified that benzene compounds can be treated effectively by high voltage electric pulses, and this fact indicates that the treatment method by pulsed power source is a promising substitute.

  • PDF

High-power Quasi-continuous Wave Operation of Incoherently Combined Yb-doped Fiber Lasers

  • Jeon, Minjee;Jung, Yeji;Park, Jongseon;Jeong, Hoon;Kim, Ji Won;Seo, Hongseok
    • Current Optics and Photonics
    • /
    • v.1 no.5
    • /
    • pp.525-528
    • /
    • 2017
  • High-energy, high-power, quasi-continuous wave (QCW) operation of double-clad Yb fiber lasers incorporating an incoherent signal combiner is reported. We constructed four efficient, high-power Yb fiber lasers, each of which produced rectangular pulses at 1080 nm with a pulse energy greater than 15 J, and a pulse duration of 10 ms at a repetition rate of 10 Hz, corresponding to an average power of over 150 W and a peak power of over 1.5 kW for ~200 W of incident pump power at 915 nm. These laser outputs were combined by a homemade incoherent fiber signal combiner with low loss, yielding a maximum peak power of ~6.0 kW in a beam with $M^2{\approx}12.5$. The detailed laser characteristics and prospects for further power scaling in QCW operation are discussed.

Full Wave Cockroft Walton Application for Transcranial Magnetic Stimulation

  • Choi, Sun-Seob;Kim, Whi-Young
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.246-252
    • /
    • 2011
  • A high-voltage power supply has been built for activation of the brain via stimulation using a Full Wave Cockroft-Walton Circuit (FWCW). A resonant half-bridge inverter was applied (with half plus/half minus DC voltage) through a bidirectional power transistor to a magnetic stimulation device with the capability of producing a variety of pulse forms. The energy obtained from the previous stage runs the transformer and FW-CW, and the current pulse coming from the pulse-forming circuit is transmitted to a stimulation coil device. In addition, the residual energy in each circuit will again generate stimulation pulses through the transformer. In particular, the bidirectional device modifies the control mode of the stimulation coil to which the current that exceeds the rated current is applied, consequently controlling the output voltage as a constant current mode. Since a serial resonant half-bridge has less switching loss and is able to reduce parasitic capacitance, a device, which can simultaneously change the charging voltage of the energy-storage condenser and the pulse repetition rate, could be implemented. Image processing of the brain activity was implemented using a graphical user interface (GUI) through a data mining technique (data mining) after measuring the vital signs separated from the frequencies of EEG and ECG spectra obtained from the pulse stimulation using a 90S8535 chip (AMTEL Corporation).

Stabilization of Output Pulses from a Passively Q-switched Nd:YVO4 Laser Pumped by a Continuous-wave Laser Diode (연속 발진 다이오드 레이저로 여기된 수동형 Q-스위치 Nd:YVO4 레이저의 출력 펄스 안정화)

  • Ahn, Seung-In;Park, Yune-Bae;Yeo, Hwan-Seop;Lee, Joon-Ho;Lee, Kang-In;Yi, Jong-Hoon
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.5
    • /
    • pp.276-280
    • /
    • 2009
  • A Cr:YAG crystal was used as a saturable absorber for passive Q-switching of a Nd:$YVO_4$ laser which was pumped by a 1-W continuous wave laser diode. The first surface of the Cr:YAG was high-reflection coated for the pump wavelength. The high-reflection coating improved the absorption efficiency of the pump beam in the Nd:$YVO_4$ through double pass absorption. It also prevented pump beam induced partial bleaching of the Cr:YAG. The peak-to-peak pulse fluctuation of passively Q-switched laser output was approximately 4 %. The minimum pulse-width was measured to be 7.11 ns. Also, the average pulse repetition rate was 9 kHz and the maximum output power was 16.27 mW.

Installation for Preparing of Nanopowders by Target Evaporation with Pulsed Electron Beam

  • Sokovnin S. Yu.;Kotov Yu. A.;Rhee C. K.
    • Journal of Powder Materials
    • /
    • v.12 no.3
    • /
    • pp.167-173
    • /
    • 2005
  • Production of weakly agglomerated nanopowders with the characteristic size of about 10 nm and a narrow particle size distribution is still a topical problem especially if the matter is an acceptable output (>50 g/hour), a high purity of the final product, and a low (energy consumption. The available experience and literature data show that the most promising approach to production of such powders is the evaporation-condensation method, which has a set of means for heating of the target. From this viewpoint the use of pulsed electron accelerators for production of nanopowders is preferable since they allow a relatively simple adjustment of the energy, the pulse length, and the pulse repetition rate. The use of a pulsed electron accelerator provides the following opportunities: a high-purity product; only the target and the working gas will interact and their purity can be controlled; evaporation products will be removed from the irradiation zone between pulses; as a result, the electron energy will be used more efficiently; adjustment of the particle size distribution and the characteristic size of particles by changing the pulse energy and the irradiated area. Considering the obtained results, we developed a design and made an installation for production of nanopowders, which is based on a hollow-cathode pulsed gas-filled diode. The use of a hollow-cathode gas-filled diode allows producing and utilizing an electron beam in a single chamber. The emission modulation in the hollow cathode will allow forming an electron beam 5 to 100 ms long. This will ensure an exact selection of the beam energy. By now we have completed the design work, manufactured units, equipped the installation, and began putting the installation into operation. A small amount of nanopowders has been produced.

The detection of cavitation in hydraulic machines by use of ultrasonic signal analysis

  • Gruber, P.;Farhat, M.;Odermatt, P.;Etterlin, M.;Lerch, T.;Frei, M.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.4
    • /
    • pp.264-273
    • /
    • 2015
  • This presentation describes an experimental approach for the detection of cavitation in hydraulic machines by use of ultrasonic signal analysis. Instead of using the high frequency pulses (typically 1MHz) only for transit time measurement different other signal characteristics are extracted from the individual signals and its correlation function with reference signals in order to gain knowledge of the water conditions. As the pulse repetition rate is high (typically 100Hz), statistical parameters can be extracted of the signals. The idea is to find patterns in the parameters by a classifier that can distinguish between the different water states. This classification scheme has been applied to different cavitation sections: a sphere in a water flow in circular tube at the HSLU in Lucerne, a NACA profile in a cavitation tunnel and two Francis model test turbines all at LMH in Lausanne. From the signal raw data several statistical parameters in the time and frequency domain as well as from the correlation function with reference signals have been determined. As classifiers two methods were used: neural feed forward networks and decision trees. For both classification methods realizations with lowest complexity as possible are of special interest. It is shown that two to three signal characteristics, two from the signal itself and one from the correlation function are in many cases sufficient for the detection capability. The final goal is to combine these results with operating point, vibration, acoustic emission and dynamic pressure information such that a distinction between dangerous and not dangerous cavitation is possible.

Harmonic mode locking of 'Figure-of-Eight' fiber soliton laser using regenerative phase modulation (재생형 위상 변조에 의한 '8'자 구조 광섬유 솔리톤 레이저의 고차 조화 모드록킹)

  • 윤승철;박희갑
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.2
    • /
    • pp.146-151
    • /
    • 1999
  • We demonstrated a harmonic mode locking scheme that used regeneratie phase modulation to get a high and stable repetition rate in a figure-of-eight fiber soliton laser. From the detected beat spectra of the laser output, a sinusoidal clock freguency tone of 400 MHz, the 96th harmonics of the fundamental mode locking frequency, was extracted with a high Q filter and was used to drive the phase modulator, resulting in stable output of soliton pulse train synchronized with the modulation signal. Generated soliton pulses had FWHM pulsewidth of 930 fs and 3.1 nm linewidth, yielding pulsewidth-bandwidth product of 0.359 that was close to the transform limit. As the modulation frequency always followed the beat frequency of laser modes, stable harmonic mode locking was achieved without the adjustment of the cavity length, which has been commonly required in actively mode-locked lasers.

  • PDF