DOI QR코드

DOI QR Code

Stabilization of Output Pulses from a Passively Q-switched Nd:YVO4 Laser Pumped by a Continuous-wave Laser Diode

연속 발진 다이오드 레이저로 여기된 수동형 Q-스위치 Nd:YVO4 레이저의 출력 펄스 안정화

  • Published : 2009.10.25

Abstract

A Cr:YAG crystal was used as a saturable absorber for passive Q-switching of a Nd:$YVO_4$ laser which was pumped by a 1-W continuous wave laser diode. The first surface of the Cr:YAG was high-reflection coated for the pump wavelength. The high-reflection coating improved the absorption efficiency of the pump beam in the Nd:$YVO_4$ through double pass absorption. It also prevented pump beam induced partial bleaching of the Cr:YAG. The peak-to-peak pulse fluctuation of passively Q-switched laser output was approximately 4 %. The minimum pulse-width was measured to be 7.11 ns. Also, the average pulse repetition rate was 9 kHz and the maximum output power was 16.27 mW.

Cr:YAG 결정을 포화흡수체로 사용하여 수동형 Q-스위치시킨 다이오드 레이저 여기 Nd:$YVO_4$ 레이저를 제작하였다. Cr:YAG 결정의 한 면에 여기 빛 파장(808 nm)에 대해 고반사 코팅을 한 후, Nd:$YVO_4$ 결정과 접촉시켜 공진기를 구성하였다. Cr:YAG의 한 면에 여기 다이오드 레이저를 반사시키는 코팅을 입혀 공진기의 광변환 효율을 높임과 동시에, 여기빔에 의한 포화흡수체의 표백현상을 방지하여 안정된 출력이 나오게 하였다. 레이저 이득 매질 및 포화흡수체의 온도는 열전 냉각기와 냉각수를 사용하여 안정화 시켰다. 온도안정화를 시킨 상태에서 발진되는 펄스의 첨두 출력 요동(peak to peak)은 4%였다. 다이오드 레이저의 출력이 1 W일 때, 출력 펄스의 반복률은 평균 9 KHz 였으며, 최소 펄스폭은 7.11 ns, 최고 출력은 16.27 mW였다.

Keywords

References

  1. J. Dong, K.-I. Ueda, Y. Hideki, and A. A. Kaminskii, “Laser-diode pumped self-Q-switched microchip lasers,” Optical Review 15, 57-74 (2008). https://doi.org/10.1007/s10043-008-0010-3
  2. J. Li, J. Dong, M. Mitsurua, A. Shirakawa, and K.-I. Ueda, “Transient temperature profile in the gain medium of CW-and end-pumped passively Q-switched microchip laser,” Opt. Comm. 270, 63-67 (2002). https://doi.org/10.1016/j.optcom.2006.08.043
  3. Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Deng, J. Xu, J. Dong, and W. Chen, “Passively Q-switched diode-pumped Yb:YAG laser using $Cr^{4+}&-doped garnets,” Optical Materials 19, 403-413 (2002). https://doi.org/10.1016/S0925-3467(02)00003-4
  4. Y. Kalisky, “$Cr^{4+}$-doped crystals: their use as lasers and passive Q-switches,” Progress in Quangtum Electronics 28, 249-303 (2004). https://doi.org/10.1016/j.pquantelec.2004.09.001
  5. N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by $Cr^{4+}$:YAG saturable absorber,” Jpn. J. Appl. Phys. 40, 1253-1259 (2001). https://doi.org/10.1143/JJAP.40.1253
  6. M. Tsunekne, T. Inohara, A. Ando, K. Kanehara, and T. Taira, “High peak power, passively Q-switched Cr:YAG/Nd:YAG micro-laser for ignition of engine,“ in Proc. Advanced Solid-State Photonics (Nara, Japan, Jan. 2008), MB4.
  7. M. Tsunekne, T. Inohara, A. Ando, K. Kanehara, and T. Taira, “Compact, high peak power, passively Q-switched micro-laser for ignition of engines,” in Proc. CLEO/QELS (San Jose, California, USA, May 2008), CFJ4.
  8. B. Cole, L. Goldberg, C. W. Trussell, A. Hays, B. W. Schilling, and C. McIntosh, “Reduction of timing jitter in a Q-switched Nd:YAG laser by direct bleaching of a $Cr^{4+}$:YAG saturable absorber,” Opt. Exp. 17, 1766-1771 (2009). https://doi.org/10.1364/OE.17.001766