• Title/Summary/Keyword: High-lift System

Search Result 235, Processing Time 0.025 seconds

Combustion Characteristic of Anode Off Gas for Fuel Cell Reformer (개질기용 Anode Off Gas의 연소특성에 관한 연구)

  • Lee, Pil Hyong;Hwang, Sang Soon
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.4
    • /
    • pp.5-10
    • /
    • 2012
  • The reformer system is a chemical device that drives the conversion of hydrocarbon to hydrogen rich gas under high temperature environment($600-1,000^{\circ}C$). Generally, NG(Natural Gas) or AOG(Anode Off Gas) is used as fuel of fuel cell reformer combustion system. The experimental study to analyze the combustion characteristics of a premixed ceramic burner used for 0.5-1.0 kW fuel cell reformer was performed. Ceramic burner experiments using NG and AOG were carried out to investigate the flame stability characteristics by heating capacity, equivalence ratio and different fuels respectively. The results show that surface flames can be classified into green, red, blue and lift-off flames as the equivalence ratio of methane-air mixture decreases. And the stable flames can be established using NG and AOG as reformer fuel in the perforated ceramic burner. In particular, the blue flame is found to be stable at a lean equivalence ratio under different mixture conditions of NG and AOG for the 0.5 to 1.0 kW fuel cell system power range. NOx emission is under 60 ppm between 0.70 to 0.78 of equivalence ratio and CO emission is under 50 ppm between 0.70 to 0.84 of equivalence ratio.

Analysis of Muscle Contribution on Snatch Motion (역도 인상동작에 대한 근력의 기여도 분석)

  • Kang, Chan-Keum;Park, Eun-Hye
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.3
    • /
    • pp.265-276
    • /
    • 2003
  • The objective of this research is to provide basic data for improving athletic performances, suggesting methods that can be utilized at games and coaching movements in the snatch, by analyzing the level of contribution of muscles to the movements of the snatch lift through three-dimensional imaging and EMG analysis between skilled and unskilled lifters. To this end, three high school students (the skilled group), three middle school student (the unskilled group) were selected; two digital video cameras and electromyography were used. The muscles measured by an EMG include gastrocnemius muscle, biceps femoris muscle, erector spinae, latissimus dorsi muscle, trapezius muscle, and brachioradialis. Based on the Ariel Performance Analysis System (APAS) program, the results of the analysis are summarized as follows. 1. In performing snatch pulls, the skilled lifters were found to simultaneously move the weight centers of the body and the barbell close to vertical, close to the shoulders in the pulling portion; in snatching and grabbing the barbell from a sited position, it was observed that the shorter the time for adjusting to change in the height of the barbell by using rotational inertia, the better it is to perform the movements. 2. The skilled lifters were observed to perform stable and efficient movements in grabbing the bar in a sited position, by moving the barbell and weight center of the body close to vertical and moving the shoulder joint under the bar fast. 3. The results of the EMG analysis of the entire movements from the snatching portion to the portion of grabbing the bar in a sited position show that when the skilled lifters lifted the barbell vertically during the pulling portion, their shoulder joints were extended to put more weight on biceps femoris muscle and brachioradialis; and in snatching and grabbing the bar from a sited position, it was found desirable to increase the myoelectrical activity of erector spinae in order to achieve a balance in the movements of the hip joint between font and rear, as the weight centers of the body and the barbell move higher. On the other hand, the unskilled lifters were found that in response to change in posture, they increase their muscular strength inefficiently in performing the movements throughout the entire lifting process.

Basic Physiological Research on the Wing Flapping of the Sweet Potato Hawkmoth Using Multimedia

  • Nakajima, Isao;Yagi, Yukako
    • Journal of Multimedia Information System
    • /
    • v.7 no.2
    • /
    • pp.189-196
    • /
    • 2020
  • We have developed a device for recording biological data by inserting three electrodes and a needle with an angular velocity sensor into the moth for the purpose of measuring the electromyogram of the flapping and the corresponding lift force. With this measurement, it is possible to evaluate the moth-physiological function of moths, and the amount of pesticides that insects are exposed to (currently LD50-based standards), especially the amount of chronic low-concentration exposure, can be reduced the dose. We measured and recorded 2-channel electromyography (EMG) and angular velocity corresponding to pitch angle (pitch-like angle) associated with wing flapping for 100 sweet potato hawkmoths (50 females and 50 males) with the animals suspended and constrained in air. Overall, the angular velocity and amplitude of EMG signals demonstrated high correlation, with a correlation coefficient of R = 0.792. In contrast, the results of analysis performed on the peak-to-peak (PP) EMG intervals, which correspond to the RR intervals of ECG signals, indicated a correlation between ΔF fluctuation and angular velocity of R = 0.379. Thus, the accuracy of the regression curve was relatively poor. Using a DC amplification circuit without capacitive coupling as the EMG amplification circuit, we confirmed that the baseline changes at the gear change point of wing flapping. The following formula gives the lift provided by the wing: angular velocity × thoracic weight - air resistance - (eddy resistance due to turbulence). In future studies, we plan to attach a micro radio transmitter to the moths to gather data on potential energy, kinetic energy, and displacement during free flight for analysis. Such physiological functional evaluations of moths may alleviate damage to insect health due to repeated exposure to multiple agrochemicals and may lead to significant changes in the toxicity standards, which are currently based on LD50 values.

Application of a New NDI Method using Magneto-Optical Film for Inspection of Micro-Cracks (미소균열 탐상을 위한 자기광학소자를 이용한 비파괴탐상법의 제안과 적용)

  • Lee, Hyoung-No;Park, Han-Ju;Shoji, Tetsuo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.2
    • /
    • pp.197-203
    • /
    • 2001
  • Micro-defects induced by design and production failure or working environments are known as the cause of SCC(Stress Corrosion Cracking) in aged structures. Therefore, the evaluation of structural integrity based on micro-cracks is required not only a manufacturing step but also in-service term. So we introduce a new nondestructive inspection method using the magneto-optical film to detect micro-cracks. The method has some advantage such as high testing speed, real time data acquistion and the possibility of remote sensing by using of a magneto-optical film that takes advantage of the change of magnetic domains and domain walls. This paper introduces the concept of the new nondestructive inspection method using the magneto-optical film, also proves the possibility of this method as a remote testing system under oscillating load considering application on real fields by applying the method to four types of specimens.

  • PDF

In situ Recovery of hCTLA4Ig from Suspension Cell Cultures of Oryza sativa (형질전환 벼 현탁세포 배양에서 hCTLA4Ig의 in situ 회수)

  • Choi, Hong-Yeol;Cheon, Su-Hwan;Kwon, Jun-Young;Yun, Boreum;Hong, Seok-Mi;Kim, Sun-Dal;Kim, Dong-Il
    • KSBB Journal
    • /
    • v.31 no.4
    • /
    • pp.284-290
    • /
    • 2016
  • In this research, recombinant human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4Ig) was produced by transgenic rice cells. RAmy3D promoter was used for overcome the limitation of low expression level in transgenic plant cells, and the secretion of target protein was accomplished by signal peptide. However, the RAmy3D promoter system which can be induced only by sugar starvation causes the decrease of cell viability. As a result, cell death promotes the release of protease which degrades the target proteins. The protein stability and productivity can be significantly influenced by proteolysis activity. Therefore, development of new strategies are necessary for the in situ recovery of target proteins from cell culture media. In this study, in situ recovery was performed by various strategies. Direct addition of Protein A resin with nylon bag leads to cell death by increased shear stress and decrease in production of hCTLA4Ig by protease. Medium exchange through modified flask could recover hCTLA4Ig with high cell viability and low protease activity, on the other hand, the productivity was lower than that of control. When in situ recovery was conducted at day 7 after induction in air-lift bioreactor, 1.94-fold of hCTLA4Ig could be recovered compared to control culture without in situ recovery. Consequently, in situ recovery of hCTLA4Ig from transgenic rice cell culture could enhance productivity significantly and prevent degradation of target proteins effectively.

Evaluation of an insect-mimicking flapping device actuated by a piezoceramic actuator (곤충 비행원리를 모사한 압전 작동기 구동형 날갯짓 기구의)

  • 박훈철;변도영;구남서;모하메드 샤이푸딘
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.8
    • /
    • pp.55-62
    • /
    • 2006
  • This paper presents experimental evaluation of an insect-mimicking flapping-wing device actuated by a unimorph piezoceramic actuator. Length of each rod and hinge point in the linkage/amplification system are carefully chosen such that the resulting wing motion can mimic clapping of wings in a real insect at the end of upstroke. In addition to this, a pair of corrugated wings are fabricated mimicking zig-zag cross section of a real insect wing. Thanks to the two additional implementation, the improved flapping wing device can generate a larger lift force than the previous model even though area of the new wing is about 50% less than that of the previous wing. In this work, effects of the wing clapping, the wing corrugation, and the input wave form on the lift force generation have been also experimentally investigated. Finally, the vortex generated by the flapping device has been captured by a high speed camera, showing that vortices are produced during up- and down-strokes.

Design and Implementation of PIC/FLC plus SMC for Positive Output Elementary Super Lift Luo Converter working in Discontinuous Conduction Mode

  • Muthukaruppasamy, S.;Abudhahir, A.;Saravanan, A. Gnana;Gnanavadivel, J.;Duraipandy, P.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1886-1900
    • /
    • 2018
  • This paper proposes a confronting feedback control structure and controllers for positive output elementary super lift Luo converters (POESLLCs) working in discontinuous conduction mode (DCM). The POESLLC offers the merits like high voltage transfer gain, good efficiency, and minimized coil current and capacitor voltage ripples. The POESLLC working in DCM holds the value of not having right half pole zero (RHPZ) in their control to output transfer function unlike continuous conduction mode (CCM). Also the DCM bestows superlative dynamic response, eliminates the reverse recovery troubles of diode and retains the stability. The proposed control structure involves two controllers respectively to control the voltage (outer) loop and the current (inner) loop to confront the time-varying ON/OFF characteristics of variable structured systems (VSSs) like POESLLC. This study involves two different combination of feedback controllers viz. the proportional integral controller (PIC) plus sliding mode controller (SMC) and the fuzzy logic controller (FLC) plus SMC. The state space averaging modeling of POESLLC in DCM is reviewed first, then design of PIC, FLC and SMC are detailed. The performance of developed controller combinations is studied at different working states of the POESLLC system by MATLAB-Simulink implementation. Further the experimental corroboration is done through implementation of the developed controllers in PIC 16F877A processor. The prototype uses IRF250 MOSFET, IR2110 driver and UF5408 diodes. The results reassured the proficiency of designed FLC plus SMC combination over its counterpart PIC plus SMC.

Wireless Power Transfer for Electric Vehicles Charging Based on Hybrid Topology Switching With a Single Inverter

  • Chen, Yafei;Zhang, Hailong;Kim, Dong-Hee;Park, Sung-Jun;Park, Seong-Mi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_1
    • /
    • pp.115-124
    • /
    • 2020
  • In wireless power transfer (WPT) system, the conventional compensation topologies only can provide a constant current (CC) or constant voltage (CV) output under their resonant conditions. It is difficult to meet the CC and CV hybrid charging requirements without any other schemes. In this study, a switching hybrid topology (SHT) is proposed for CC and CV electric vehicle (EV) battery charging. By utilizing an additional capacitor and two AC switches (ACSs), a double-side LCC (DS-LCC) and an inductor and double capacitors-series (LCC-S) topologies are combined. According to the specified CC and CV charging profile, the CC and CV charging modes can be flexibly converted by the two additional ACSs. In addition, zero phase angle (ZPA) also can be achieved in both charging modes. In this method, because the operating frequency is fixed, without using PWM control, and only a small number of devices are added, it has the benefits of low-cost, easy-controllability and high efficiency. A 3.3-kW experimental prototype is configured to verify the proposed switching hybrid charger. The maximum DC efficiencies (at 3.3-kW) of the proposed SHT is 92.58%.

Centralized Controller High-altitude Work Car Elevations Lift Structure Safety Assessment (중앙집중식 컨트롤러 고소작업차의 고소리프트의 구조안정성 평가)

  • Kim, Jun-tae;Lee, Gi-yeong;Lee, Sang-sik;Park, Won-yeop
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.4
    • /
    • pp.350-357
    • /
    • 2017
  • This study was conducted as a post - study on the development of a centralized controller and a hydraulic lift system including structural analysis and remote control for the development of a vertically elevated car. The safety review was carried out through the structural modification of the elevator lift which was developed during the previous research. 3D modeling was performed with Solidworks, and a model of finite element was created through Hypermesh S / W. In addition, the loading environment of the work vehicle for the evaluation is a condition in which the loading amount is 250 kg per position (total, upper, upper, lower, and lower) on the work table, ), The structural analysis was carried out under the condition that the load was 600 kg, and safety was examined in various aspects. As a result, when the allowable load of 250 kg and the excess load of 600 kg are excluded (except Case-11), the stress level is below the yield strength. In the case of Case-11, there is a region exceeding the yield strength at the center support portion of the safety bar at the upper end even after excluding the component which generates the maximum stress, but it does not affect the safety aspect of the whole structure Respectively. Looking at the deflection results, it can be seen that in all cases the maximum deflection occurs in the same table, and the tendency of sagging in both 250 kg and 600 kg is the same.

Shape and Spacing Effects on Curvy Twin Sail for Autonomous Sailing Drone (무인 해상 드론용 트윈 세일의 형태와 간격에 관한 연구)

  • Pham, Minh-Ngoc;Kim, Bu-Gi;Yang, Changjo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.931-941
    • /
    • 2020
  • There is a growing interest this paper for ocean sensing where autonomous vehicles can play an essential role in assisting engineers, researchers, and scientists with environmental monitoring and collecting oceanographic data. This study was conducted to develop a rigid sail for the autonomous sailing drone. Our study aims to numerically analyze the aerodynamic characteristics of curvy twin sail and compare it with wing sail. Because racing regulations limit the sail shape, only the two-dimensional geometry (2D) was open for an optimization. Therefore, the first objective was to identify the aerodynamic performance of such curvy twin sails. The secondary objective was to estimate the effect of the sail's spacing and shapes. A viscous Navier-Stokes flow solver was used for the numerical aerodynamic analysis. The 2D aerodynamic investigation is a preliminary evaluation. The results indicated that the curvy twin sail designs have improved lift, drag, and driving force coefficient compared to the wing sails. The spacing between the port and starboard sails of curvy twin sail was an important parameter. The spacing is 0.035 L, 0.07 L, and 0.14 L shows the lift coefficient reduction because of dramatically stall effect, while flow separation is improved with spacing is 0.21 L, 0.28 L, and 0.35 L. Significantly, the spacing 0.28 L shows the maximum high pressure at the lower area and the small low pressure area at leading edges. Therefore, the highest lift was generated.