• Title/Summary/Keyword: High-index GaAs

Search Result 52, Processing Time 0.034 seconds

Heavy Carbon Incorporation into High-Index GaAs (고농도로 탄소 도핑된 높은 밀러 지수 GaAs)

  • Son, Chang-Sik
    • Korean Journal of Materials Research
    • /
    • v.13 no.11
    • /
    • pp.717-720
    • /
    • 2003
  • Heavily $p^{ +}$-typed ($10^{20}$ $cm^{-3}$ ) GaAs epilayers have been grown on high-index GaAs substrates with various crystallographic orientations from (100) to (111)A by a low-pressure metalorganic chemical vapor deposition. Carbon (C) tetrabromide (CBr$_4$) was used as a C source. At moderate growth temperatures and high V/III ratios, the hole concentration of C-doped GaAs epilayers shows the crystallographic orientation dependence. The bonding strength of As sites on a growing surface plays an important role in the C incorporation into the high-index GaAs substrates.

Crystallographic Orientation Dependence Of Electrical Properties of Carbon-doped GaAs Grown by Low Pressure Metalorganic Chemical Vapor Deposition Using CBr4 (저압 MOCVD로 CBr4 가스를 사용하여 탄소 도핑된 GaAs 에피층의 결정학적 방향에 따른 전기적 성질의 의존성)

  • 손창식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.3
    • /
    • pp.214-219
    • /
    • 2002
  • In order to elucidate the crystallographic orientation dependence of electrical properties of carbon (C)-doped GaAs epilayers, C incorporation into GaAs epilayers on high-index GaAs substrates with various crystallographic orientations from (100) to (111)A has been performed by a low pressure metalorganic chemical vapor deposition using C tetrabromide ($CBt_4$) as a C source. The hole concentration of C-doped GaAs epilayers rapidly decreases with a hump at (311)A with increasing the offset angle. Although the growth temperature and the V/III ratio are varied, the crystallographic orientation dependence of hole concentration show a same trend. The above behaviors indicate that the bonding strength of As sites on a glowing surface plays an important role in the C incorporation into the high-index GaAs substrates.

Selectrive Liquid Phase Epitaxy of GaAs` Kinetics and MOrphology (비소화칼륨의 선택적 액상 에피층 성장;성장기구 및 형태)

  • Kim, Sang Bae;Kwon, Young Se
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.6
    • /
    • pp.820-832
    • /
    • 1986
  • In contrast to conventional liquid phase epitaxy of GaAs, surface kinetics limited growth is predominant in selective liquid phase epitaxy. For the stripe openings in the high-index crystal-lographic directions, the well-known facet formations and the decompositions into the low index planes or smooth circular surfaces are observed depending on the growth kinetics. For the low index direction stripe, surface kinetics limited growth is evident. By a numerical calcualtion we show that these phenomena are due to the enhanced masstransport by two dimensional diffusion and growth rate anisotropy which is found to be very stdrong with cusped minima for some singular planes in the solution growth as well as in vapor phase epitaxy. Morphological stability is briefly treated in terms of diffusion and its implications on device application are stated. Tese phenomena may be common to III-V compound semiconductors as well as GaAs.

  • PDF

Design of High Performance On -chip Voltage Controlled Oscillator Using GaAs MESFET (GaAs MESFET을 이용한 고성능 온-칩 전압 제어 발진기 설계)

  • 김재영;이범철;최종문;최우영;김봉렬
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.12
    • /
    • pp.24-30
    • /
    • 1996
  • In this paper, we designed a new type of high frequency on-chip voltage controlled oscillator (VCO) using GaAs MESFET, and their performances were comapred with those of the conventional VCO. Each VCO was designed with three-to-five ring oscillator and inverter, buffer and NOR gate were implemented by GaAs source coupled FET logic, which has better speed and noise performance compared to other GaAs MESFET logic. SPICE simulation showed that the gain of conventional and our new VCO was 1.24[GHz/V], 0.54[GHz/V], respectively. The frquency tuning range were 2.31 to 3.55 [GHz] for conventional VCO and 2.47 to 3.01[GHz] for our new design. This shows that the factor of two gain reductin was achieved without too much sacrifice in the oscillation frequency. For our new VCO, the average temperature index was -2[MHz/.deg. C] in the range of -20~85[.deg. C] the power supply noise index was 5[MHz/%] for 5.3[V].+-.10[%] and total power consumption was 60.58[mW].

  • PDF

Design and Simulation of an 808 nm InAlAs/AlGaAs GRIN-SCH Quantum Dot Laser Diode

  • Chan, Trevor;Son, Sung-Hun;Kim, Kyoung-Chan;Kim, Tae-Geun
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.124-127
    • /
    • 2011
  • Quantum dots were designed within a GRIN-SCH(Graded index - Separate confinement Heterostructure) heterostructure to create a high power InAlAs/AlGaAs laser diode. 808 nm light emission was with a quantum dot composition of In0.665Al0.335As and wetting layer composition of Al0.2Ga0.8As by LASTIP simulation software. Typical characteristics of GRIN structures such as high confinement ratios and Gaussian beam profiles were shown to still apply when quantum dots are used as the active media. With a dot density of 1.0x1011 dots/cm2, two quantum dot layers were found to be good enough for low threshold, high-power laser applications.

Analysis of Properties and Fabrication of $1000{\AA}$ silicon nitride MIM capacitor with High Breakdown Electric Field for InGaP/GaAs HBT Application (InGaP/GaAs HBT 적용을 위한 높은 절연강토의$1000{\AA}$ 실리콘 질화막 MIM capacitor제작과 특성 분석)

  • So, Soon-Jin;Oh, Doo-Suk;Sung, Ho-Kun;Song, Min-Jong;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.693-696
    • /
    • 2004
  • For InGaP/GaAs HBT applications, we have developed characterized MIM capacitors with thin $1000{\AA}$ PECVD silicon nitride which were deposited with $SiH_4/NH_3$ gas mixing rate, working pressure, and RF power of PECVD at $300^{\circ}C$ and had the capacitance density of 600 pF/$mm^2$ with the breakdown electric fields of 3073 MV/cm. Three PECVD process parameters were designed to lower the refractive index and then lower the deposition rate of silicon nitride films for the high breakdown electric field. At the PECVD process condition of gas mixing rate (0.92), working pressure (1.3 Torr), RF power (53 W), the AFM Rms value of about $1000{\AA}$ silicon nitride on the bottom metal was the lowest of 0.662 nmand breakdown electric fields were the highest of about 73 MV/cm.

  • PDF

940-nm 350-mW Transverse Single-mode Laser Diode with AlGaAs/InGaAs GRIN-SCH and Asymmetric Structure

  • Kwak, Jeonggeun;Park, Jongkeun;Park, Jeonghyun;Baek, Kijong;Choi, Ansik;Kim, Taekyung
    • Current Optics and Photonics
    • /
    • v.3 no.6
    • /
    • pp.583-589
    • /
    • 2019
  • We report experimental results on 940-nm 350-mW AlGaAs/InGaAs transverse single-mode laser diodes (LDs) adopting graded-index separate confinement heterostructures (GRIN-SCH) and p,n-clad asymmetric structures, with improved temperature and small-divergence beam characteristics under high-output-power operation, for a three-dimensional (3D) motion-recognition sensor. The GRIN-SCH design provides good carrier confinement and prevents current leakage by adding a grading layer between cladding and waveguide layers. The asymmetric design, which differs in refractive-index distribution of p-n cladding layers, reduces the divergence angle at high-power operation and widens the transverse mode distribution to decrease the power density around emission facets. At an optical power of 350 mW under continuous-wave (CW) operation, Gaussian narrow far-field patterns (FFP) are measured with the full width at half maximum vertical divergence angle to be 18 degrees. A threshold current (Ith) of 65 mA, slope efficiency (SE) of 0.98 mW/mA, and operating current (Iop) of 400 mA are obtained at room temperature. Also, we could achieve catastrophic optical damage (COD) of 850 mW and long-term reliability of 60℃ with a TO-56 package.