• 제목/요약/키워드: High-energy density

검색결과 2,442건 처리시간 0.031초

SiCf/SiC 복합체의 화학기상침착 거동에 미치는 권선 구조와 침착 변수의 영향 (Influence of Winding Patterns and Infiltration Parameters on Chemical Vapor Infiltration Behaviors of SiCf/SiC Composites)

  • 김대종;고명진;이현근;박지연;김원주
    • 한국세라믹학회지
    • /
    • 제51권5호
    • /
    • pp.453-458
    • /
    • 2014
  • SiC and its composites have been considered for use as nuclear fuel cladding materials of pressurized light water reactors. In this study, a $SiC_f$/SiC composite as a constituent layer of SiC triplex fuel cladding was fabricated using a chemical vapor infiltration (CVI) process in which tubular SiC fiber preforms were prepared using a filament winding method. To enhance the matrix density of the composite layer, winding patterns, deposition temperature, and gas input ratio were controlled. Fiber arrangement and porosity were the main parameters influencing densification behaviors. Final density of the composites decreased as the SiC fiber volume fraction increased. The CVI process was optimized to densify the tubular preforms with high fiber volume fraction at a high $H_2$/MTS ratio of 20 at $1000^{\circ}C$; in this process, surface canning of the composites was effectively retarded.

수소기관의 이상점화에 의한 역화발생 (Backfire Occurrence by Abnormal Electric Discharge in Hydrogen Fueled Engine)

  • 김윤영;류태호;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제13권1호
    • /
    • pp.65-73
    • /
    • 2002
  • Because of low flame ion density in hydrogen-air mixture, many residual electric energy could be existed in the ignition system of hydrogen engine, If these residual energy discharged abnormally during intake stroke, it may be the cause of backfire occurrence which is serious problem in development of hydrogen fueled engine but unsolved in spite of many concerned research on it. In this study, the possibility of backfire occurrence by abnormal electric discharge and countermeasure of that were investigated by using the experimental single cylinder hydrogen fueled engine with two types of ignition system. The results show that abnormal electric discharge appeared in low load with low ion density and then results in back fire occurrence, It is also seen that countermeasure method installing larger earth resistance in high tension code is effective to control abnormal electric discharge.

Characteristics of High Density U-Mo Alloy Powder Prepared by Centrifugal Atomization

  • Kim, Ki-Hwan;Ahn, Hyeon-Seok;Lee, Don-Bae;Park, Hee-Dae;Kim, Chang-Kyu;Baek, Kyeong-Wook
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(3)
    • /
    • pp.213-218
    • /
    • 1996
  • Characteristics of high density U-Mo alloy powder prepared by centrifugal atomization have been examined. The results indicate that the majority of the atomized U-Mo alloy particles has a smooth surface and frequently near-perfect spheroidal shape with few satellites attached. The size distribution of atomized U-Mo alloy powder shows the mono-modal size distribution seen in ligament disintegration mechanism. All phases of atomized alloy powder below 150$\mu\textrm{m}$ irrespectively to particle size are found to be ${\gamma}$-U (cubic structure) phases with isotropic structure and not to be U$_2$Mo phase at all. The microstructure of atomized U-Mo alloy particulates has micro-crystalline structure with non-dendritic gram supersaturated with Mo element. Also the grain size of ${\gamma}$ -U tends to decrease with the decrease of the powder diameter.

  • PDF

Co-Cr 자성합금 박막의 조성적 상분리 현상의 열역학적 고찰 (A Study on Thermodynamics for Compositional Separation in Co-Cr magnetic Alloy Films)

  • 송오성;전전안
    • 한국재료학회지
    • /
    • 제9권4호
    • /
    • pp.341-344
    • /
    • 1999
  • We reported compositional separation(CS) into Co-enriched and Cri-enriched components inside the grains of Co-Cr based thin films prepared by rf sputtering. CS strongly depends on the sputtering conditions of substrate temperature and target composition. Tuning the microstructure of the Co-Cr films is important in order to employ the CS for high-density magnetic recording. We investigated the origin of CS from thermodynamic viewpoint. We employ a spinodal decomposition-like model to describe the origin of the CS in Co-Cr films. We consider the total free energy of the Co-Cr films as the sum of several free energies of; 1) thermodynamic mixing entropy of a binary solid solution, 2) magnetic ordering interaction(MOI) energy below the Curie temperature, and 3) excess interaction energy(XS) caused by the sputtering process as a function of temperature and composition. Those energies distorted the total free energy like the spinodal decomposition and caused the compositionally separated fine microstructure inside the grains. If the second derivative of the total free energy with respect to Cr composition becomes negative at a given substrate temperature, we may observe a metastable compositional separation inside the Co-Cr alloy films. We expect to exploit the microstructure of CS for ultra-high density magnetic recording.

  • PDF

THE QUEST FOR COSMIC RAY PROTONS IN GALAXY CLUSTERS

  • PFROMMER C.;ENSSLIN T. A.
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.455-460
    • /
    • 2004
  • There have been many speculations about the presence of cosmic ray protons (CRps) in galaxy clusters over the past two decades. However, no direct evidence such as the characteristic $\gamma$-ray signature of decaying pions has been found so far. These pions would be a direct tracer of hadronic CRp interactions with the ambient thermal gas also yielding observable synchrotron and inverse Compton emission by additionally produced secondary electrons. The obvious question concerns the type of galaxy clusters most likely to yield a signal: Particularly suited sites should be cluster cooling cores due to their high gas and magnetic energy densities. We studied a nearby sample of clusters evincing cooling cores in order to place stringent limits on the cluster CRp population by using non-detections of EGRET. In this context, we examined the possibility of a hadronic origin of Coma-sized radio halos as well as radio mini-halos. Especially for mini-halos, strong clues are provided by the very plausible small amount of required CRp energy density and a matching radio profile. Introducing the hadronic minimum energy criterion, we show that the energetically favored CRp energy density is constrained to $2\%{\pm}1\%$ of the thermal energy density in Perseus. We also studied the CRp population within the cooling core region of Virgo using the TeV $\gamma$-ray detection of M 87 by HEGRA. Both the expected radial $\gamma$-ray profile and the required amount of CRp support this hadronic scenario.

임의의 방향 점가진력에 의한 연성 평판 진동의 파워흐름해석 (Power Flow Analysis of Vibration of Coupled Plates Excited by a Point Force In an Arbitrary Direction)

  • 최재성;길현권;홍석윤
    • 한국소음진동공학회논문집
    • /
    • 제11권6호
    • /
    • pp.181-192
    • /
    • 2001
  • The power flow analysis (PFA) has been performed to analyze the vibration of coupled plates excited by a point force in an arbitrary direction. The point force generates the out-of-plane vibration associated wish flexural waves and the in-plane vibration associated with longitudinal and shear waves. The energy governing equation for each type of waves was introduced and solved to Predict the vibrational energy density and intensity generated by the out-of-plane and in-plane components of the point force in an arbitrary direction. The wave transmission approach was used to consider the mode conversion at the joint of the coupled plates. Numerical results for vibrational energy density and intensity on the coupled plates were presented. Comparison of the results by PFA with exact results showed that PFA can be an effective tool to predict the spatial variation of the vibrational energy and intensity on the coupled plates at high frequencies.

  • PDF

리튬이차전지 양극활물질용 LiMn2O4-LiNi1/3Mn1/3Co1/3O2의 전기화학적 특성 (Electrochemical Properties of LiMn2O4-LiNi1/3Mn1/3Co1/3O2 Cathode Materials in Lithium Secondary Batteries)

  • 공명철;;구할본
    • 한국전기전자재료학회논문지
    • /
    • 제29권5호
    • /
    • pp.298-302
    • /
    • 2016
  • In this work, $LiMn_2O_4$ and $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ cathode materials are mixed by some specific ratios to enhance the practical capacity, energy density and cycle performance of battery. At present, the most used cathode material in lithium ion batteries for EVs is spinel structure-type $LiMn_2O_4$. $LiMn_2O_4$ has advantages of high average voltage, excellent safety, environmental friendliness, and low cost. However, due to the low rechargeable capacity (120 mAh/g), it can not meet the requirement of high energy density for the EVs, resulting in limiting its development. The battery of $LiMn_2O_4-LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ (50:50 wt%) mixed cathode delivers a energy density of 483.5 mWh/g at a current rate of 1.0 C. The accumulated capacity from $1^{st}$ to 150th cycles was 18.1 Ah/g when the battery is cycled at a current rate of 1.0 C in voltage range of 3.2~4.3 V.

나노세공체 흡착제에 의한 천연가스의 흡착 및 저장 (Adsorption and Storage of Natural Gas by Nanoporous Adsorbents)

  • 정성화;장종산
    • 공업화학
    • /
    • 제20권2호
    • /
    • pp.117-125
    • /
    • 2009
  • 차세대 청정 연료로 각광받고 있는 천연가스를 자동차 등의 이동원의 동력원으로 사용하기 위해 높은 에너지 밀도로 저장하는 것은 매우 중요하다. 특히 상온 및 과히 높지 않은 압력(35~40 기압)에서 흡착을 이용하여 천연가스를 저장(ANG)하는 것은 압축에 의한 CNG 및 냉각에 의한 LNG에 비해 경제적이고 안전하며 사용이 용이한 특성이 있다. 그러나 상업적으로 통용되기 위해 필요한 저장 용량을 얻을 수 있는 경제적인 흡착제가 현재 알려져 있지 않아 다양한 연구가 계속되고 있다. 최근에 많은 연구가 되고 있는 MOF (metal-organic frameworks)를 포함한 나노 세공체도 하나의 답이 될 수 있다. 본 총설에서는 ANG 밀도를 높이기 위해 필요한 흡착제의 물성과 상업적으로 적용하기 위해 요구되는 흡착제 물성에 대해 요약하였다. 높은 에너지 밀도를 위해서는 넓은 표면적, 큰 미세 세공 부피, 적당한 세공 크기 및 높은 밀도 등이 필요하고 낮은 흡탈착 에너지 및 빠른 흡탈착 속도가 요구된다. 또한 탈착시 상압에서 잔존하는 천연가스의 양이 적어 실제 활용할 수 있는 천연가스의 양(delivery)이 높아야 한다. 현재 매우 활발히 연구되고 있는 나노 세공체를 천연가스 저장물질로 적용하고자 하는 연구도 다양하게 이루어지고 있으며 이러한 물성을 만족하는 나노세공체가 개발되기를 기대한다.

휘발성 유기물질의 고효율 열산화 시스템 개발 연구 (Study on the Development of Recuperative Thermal Oxidation System for the Volatile Organic Compounds)

  • 현주수;이시훈;이종섭;민병무
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제29회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.225-230
    • /
    • 2004
  • Volatile organic compounds (VOCs) are low calorific value gases (LCVG) emitted from chemical processes such as painting booth, dye works and drying processes etc. Characteristics of VOCs are low calorific values less than 150 kcal/$m^3$, high activation energy for ignition and low energy output. These characteristics usually make combustion unstable and its treatment processes needs high-energy consumption, The cyclone combustion system is suitable for LCVG burning because it can recirculate energy through a high swirling flow to supply the activation energy for ignition, increases energy density to make a combustion temperature higher than usual swirl combustor and also increases mixing intensity, This research was conducted to develop optimized cyclone combustion system for thermal oxidation of VOCs. This research was executed to establish the effect of swirl number with respect to the combustion temperature and composition of exhausted gas in the specific combustor design.

  • PDF

고출력.고에너지 밀도의 아연금속-공기전지 (Rechargeable Zn-air Energy Storage Cells Providing High Power Density)

  • 박동원;김진원;이재광;이재영
    • 공업화학
    • /
    • 제23권4호
    • /
    • pp.359-366
    • /
    • 2012
  • 아연금속-공기전지는 기존의 이차전지보다 높은 중량당 에너지 밀도, 낮은 제조단가를 가짐과 동시에 소재적으로 친환경적이다. 소형 및 중대형 전력 저장 시스템, 전기자동차, 스마트 휴대기기의 상용화에 있어 최우선시 되고 있는 것은 배터리의 충 방전 능이다. 따라서 환원 촉매의 높은 과전압, 산화 전극의 불안정성 및 비가역성, 액체 전해질 사용에 따른 여러 문제점을 해결하여야 한다. 본 총설에서는 공기극 막의 손상 방지 기술, 아연금속 전극의 구조 개선을 통한 충전효율 저하 방지 기술, 부반응 및 부동태화를 막기 위한 하이브리드 전해질 도입 등의 최근 기술적 이슈와 연구동향을 소개하고자 한다.