• Title/Summary/Keyword: High-Speed Grinding

Search Result 141, Processing Time 0.025 seconds

Design of High Precision Spindle System for Grinding Machine (고정밀 연삭기용 주축시스템 설계)

  • 편영식;이건범;박정현;요꼬이요시유끼;여진욱;안건준;곽철훈
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.3
    • /
    • pp.68-74
    • /
    • 2003
  • Any one of the high precision spindle systems and guide way systems, the high stiffness of structure, the error compensation during assembly, high accuracy control system is inevitable technology for development of high precision machine tools. Especially, among these, design of spindle system is one of the most important technologies leading high precision of machine tool and high quality of manufactured products. A high speed and high precision spindle system, which will be used for final machining of ferrule, is designed considering the effect of heat cutting torque, cutting fore, and work-piece materials. The detailed design and analysis process are presented.

Design of High Precision Spindle System for Ferrule Grinding Machine (페룰 가공용 고정밀 주축시스템 설계)

  • 편영식;박정현;이건범;요꼬이요시유끼;여진욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.15-19
    • /
    • 2002
  • With the rapid development of industrial technologies, the demand for high precision products has been increasing drastically. For this reason, the need for developing of high performance machine tool, which can ensure high precision, is desired in the industrial fields. Technologies on the spindle system manufacture, guideway manufacture, error compensation, design of bed structure, protection against vibrations, and system integration are core technology for developing of high precision machine tools. Especially, among these, design of spindle system, which is leading precision and manufacturing technique. is one of the most important technologies. A high speed and high precision spindle system, which will be used for final machining of ferrule, is designed considering the effect caused by thermal, cutting torque, cutting farce, and work-piece materials. The detail process of analysis is presented.

  • PDF

Micro-drilling for fabricating MCP (MCP 제조를 위한 미소구멍가공에 관한 연구)

  • 이학구;방경구;김포진;이대길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.923-928
    • /
    • 1997
  • An MCP (Microchannel Plate) is a secondary electron multiplier to detect and amplify electrons. An MCP has many rnicrochannels whose diameters range from 10 to 100pm and whose lengths range from 40 to 100times of the diameter. Each microchannel of the MCP amplifies electrons over IOOOtimes by the secondary electron emission. Even though MCPs have high performance for electron amplification, the application of MCPs is limited to high performance electronic equipments because of their high fabricating cost and the limit of increasing their size due to the conventional fabrication process. Therefore, in this work, microchannels of the MCP are manufactured by micro-drilling to reduce the cost of the MCP and to increase their size. Alumina green body with epoxy binder was machined for fabricating microchannels using a high speed air turbine spindle and micro-drills with diamond grinding abrasives. Then alumina MCP was fabricated through the sintering of the machined alumina green body.

  • PDF

Effect of N2/Ar flow rates on Si wafer surface roughness during high speed chemical dry thinning

  • Heo, W.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.128-128
    • /
    • 2010
  • In this study, we investigated the evolution and reduction of the surface roughness during the high-speed chemical dry thinning process of Si wafers. The direct injection of NO gas into the reactor during the supply of F radicals from NF3 remote plasmas was very effective in increasing the Si thinning rate, due to the NO-induced enhancement of the surface reaction, but resulted in the significant roughening of the thinned Si surface. However, the direct addition of Ar and N2 gas, together with NO gas, decreased the root mean square (RMS) surface roughness of the thinned Si wafer significantly. The process regime for the increasing of the thinning rate and concomitant reduction of the surface roughness was extended at higher Ar gas flow rates. In this way, Si wafer thinning rate as high as $20\;{\mu}m/min$ and very smooth surface roughness was obtained and the mechanical damage of silicon wafer was effectively removed. We also measured die fracture strength of thinned Si wafer in order to understand the effect of chemical dry thinning on removal of mechanical damage generated during mechanical grinding. The die fracture strength of the thinned Si wafers was measured using 3-point bending test and compared. The results indicated that chemical dry thinning with reduced surface roughness and removal of mechanical damage increased the die fracture strength of the thinned Si wafer.

  • PDF

Effects of Preparation Conditions on Thermal and Electrical Properties of Oil-based Nanofluids for Transformer Application (변압기 냉각용 오일 기지 나노유체의 제조조건이 열 및 전기적 특성에 미치는 영향)

  • Choi, Cheol;Yoo, Hyun-Sung;Oh, Jae-Myung
    • Korean Journal of Materials Research
    • /
    • v.17 no.9
    • /
    • pp.493-499
    • /
    • 2007
  • Oil-based nanofluids were prepared by dispersing nonconducting fibrous $Al_2O_3$ and spherical AlN nanoparticles in transformer oil. In this study, the effects of wet grinding and surface modification of particles on thermal and electrical properties of nanofluids were investigated. Grinding experiments were conducted with high-speed bead mill and ultrasonic homogenizer and nanoparticles were surface modified by oleic acid and polyoxyethylene alkyl acid ester(PAAE) in n-hexane or transformer oil, at the same time. It is obvious that the combination of nanoparticle, dispersant and dispersion solvent is very important for the dispersity of nanofluids. For nanofluids containing 1.0vol.% AlN particles in transformer oil, the enhancement of thermal conductivity was 11.6% compared with pure transformer oil. However, the electric-insulating property of AlN nanofluids was very low due to used dispersant itself. Therefore, the effect of the dispersant on thermal/electrical/physical properties of the transformer oil should be considered before selecting a proper dispersant.

High Temperature properties of Mechanically Alloyed Al-Ni System (기계적 합금법으로 제조된 Al-Ni 합금계의 고온특성)

  • 김유영
    • Journal of Powder Materials
    • /
    • v.1 no.1
    • /
    • pp.35-41
    • /
    • 1994
  • Mechanical alloying process of Al-8wt.% Ni powder was investigated for the various milling time in order to get the steady state powder. High temperature deformation behaviors of the sintered specimens were investigated by activation energy calculated after high temperature compression tests at the strain rates of 2.5$\times$10-3 s-1, 2.5$\times$10-2 s-1 and 2.5$\times$10-1 s-1 at the temperature range between $350^{\circ}C$ and $450^{\circ}C$. The steady state was obtained after 1000 minutes of milling with the PCA of 1.5 wt.% stearic acid under the condition of grinding media to powder weight ratio of 50 : 1 and impeller rotating speed of 300 rpm. True activation energy of Al-8wt.% Fe alloy was estimated to be 181 kJ/mole at the temperature range of 350~ $400^{\circ}C$ and 265 kJ/mole at the range of 400~$450^{\circ}C$.

  • PDF

Development of Wear-Resistant Sliding Parts Material

  • Shioiri, Hironori;Uemoto, Keiichi;Motooka, Naoki
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.116-117
    • /
    • 2006
  • Conventional high-speed steels, which are carbide decentralized materials, are used for sliding parts, but they lack sufficient hardness for some applications. Improvement of surface hardness is possible for high-Cr steels through nitriding. However, nitriding P/M parts is not advisable without sealing the porosity before treatment, as they will become brittle. However, it is difficult to seal the pores with steam treatment, because high-Cr steel has a passive film on the surface. Controlling nitriding by decreasing the amount of oxygen on the surface to be nitrided, and grinding to decrease the porosity of the surface, makes it possible to produce a material that has reasonable and sufficient hardness in the required areas.

  • PDF

Characteristics of Heat Transfer in DLG Platen According to Flow Rate of Coolant (냉각수 유량에 따른 양면 랩그라인딩 정반의 전열특성)

  • Kim, Dongkyun;Kim, Jongyun;Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • v.32 no.2
    • /
    • pp.50-55
    • /
    • 2016
  • Recently, a double-side machining process has been adopted in fabricating a sapphire glass to enhance the manufacturability. Double-side lap grinding (DLG) is one of the emerging processes that can reduce process steps in the fabrication of sapphire glasses. The DLG process uses two-body abrasion with fixed abrasives including pallet. This process is designed to have a low pressure and high rotational speed in order to obtain the required material removal rate. Thus, the temperature is distributed on the DLG platen during the process. This distribution affects the shape of the substrate after the DLG process. The coolant that is supplied into the cooling channel carved in the base platen can help to control the temperature distribution of the DLG platen. This paper presents the results of computational fluid dynamics with regard to the heat transfer in a DLG platen, which can be used for fabricating a sapphire glass. The simulation conditions were 200 rpm of rotational speed, 50℃ of frictional temperature on the pallet, and 20℃ of coolant temperature. The five cases of the coolant flow rate (20~36 l/min) were simulated with a tetrahedral mesh and prism mesh. The simulation results show that the capacity of the generated cooling system can be used for newly developed DLG machines. Moreover, the simulation results may provide a process parameter influencing the uniformity of the sapphire glass in the DLG process.

Processing Characteristics of Multi Layer Diamond Electrodeposition Tool (Multi Layer 다이아몬드 전착 공구의 가공특성에 관한 연구)

  • Cha, Seung-hwan;Yang, Dong-ho;Lee, Sang-hyeop;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.22-28
    • /
    • 2022
  • In the semiconductor and display component industries, the use of ceramic materials, which are high-strength materials, is increasing for ensuring durability and wear resistance. Among them, alumina materials are used increasingly. Alumina materials are extremely difficult to process because of their high strength; as such, research and development in the area of mineral material processing is being promoted actively to improve their processing. In this study, the processability of an electrodeposition tool is investigated using the electrodeposition method to smoothly process alumina materials. Furthermore, processing is conducted under various processing conditions, such as spindle speed, feed speed, and depth of cut. In addition, the processing characteristics of the workpiece are analyzed based on the tooling.

Finishing of Scupltured Surface through Cusp Pattern Control and Micro-ball End Milling (Cusp 패턴 조정과 미소 볼엔드 밀링을 이용한 3차원 자유곡면의 다듬질)

  • Sim, C.G.;Yang, M.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.177-183
    • /
    • 1994
  • The ball-end milling process is widely used in the die/mold industries, and it is very suitable for the machining of free-from surfaces. However, cusps(or scallops) remaining at the machined part along the cutter paths require anothe finish process such as polishing or grinding. In this study, a high sped micro ball-end milling method has been suggested for the finish of free- form surfaces. A new tool path which makes the geometrical roughness of workpiece be constant through the machined surface has been developed. In the high speed machining of micro ball-end muling experimets, the developed tool paths have been successfully applied. And it was concluded that the surface roughness from this finish cuts of micro ball-end milling process was acceptable.

  • PDF