• Title/Summary/Keyword: High-Precision Positioning

Search Result 322, Processing Time 0.027 seconds

Long Range and High Axial Load Capacity Nanopositioner Using Single Piezoelectric Actuator and Translating Supports

  • Juluri, Bala Krishna;Lin, Wu;Lim, Lennie E N
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.4
    • /
    • pp.3-9
    • /
    • 2007
  • Existing long range piezoelectric motors with friction based transmission mechanisms are limited by the axial load capacity. To overcome this problem, a new linear piezoelectric motor using one piezoelectric actuator combined with a novel stepping mechanism is reported in this paper. To obtain both long range and fine accuracy, dual positioning control strategy consisting of coarse positioning and fine positioning is used. Coarse positioning is used for long travel range by accumulating motion steps obtained by piezoelectric actuator. This is followed by fine positioning where required accuracy is obtained by fine motion displacement of piezoelectric actuator. This prototype is able to provide resolution of 20 nanometers and withstand a maximum axial load of 300N. At maximum load condition, the positioner can move forward to a travel distance of 5mm at a maximum speed of 0.4 mm/sec. This design of nanopositioner can be used in applications for ultra precision positioning and grinding operations where high axial force capacity is required.

Evaluation of Single-Frequency Precise Point Positioning Performance Based on SPARTN Corrections Provided by the SAPCORDA SAPA Service

  • Kim, Yeong-Guk;Kim, Hye-In;Lee, Hae-Chang;Kim, Miso;Park, Kwan-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.2
    • /
    • pp.75-82
    • /
    • 2021
  • Fields of high-precision positioning applications are growing fast across the mass market worldwide. Accordingly, the industry is focusing on developing methods of applying State-Space Representation (SSR) corrections on low-cost GNSS receivers. Among SSR correction types, this paper analyzes Safe Position Augmentation for Real Time Navigation (SPARTN) messages being offered by the SAfe and Precise CORrection DAta (SAPCORDA) company and validates positioning algorithms based on them. The first part of this paper introduces the SPARTN format in detail. Then, procedures on how to apply Basic-Precision Atmosphere Correction (BPAC) and High-Precision Atmosphere Correction (HPAC) messages are described. BPAC and HPAC messages are used for correcting satellite clock errors, satellite orbit errors, satellite signal biases and also ionospheric and tropospheric delays. Accuracies of positioning algorithms utilizing SPARTN messages were validated with two types of positioning strategies: Code-PPP using GPS pseudorange measurements and PPP-RTK including carrier phase measurements. In these performance checkups, only single-frequency measurements have been used and integer ambiguities were estimated as float numbers instead of fixed integers. The result shows that, with BPAC and HPAC corrections, the horizontal accuracy is 46% and 63% higher, respectively, compared to that obtained without application of SPARTN corrections. Also, the average horizontal and vertical RMSE values with HPAC are 17 cm and 27 cm, respectively.

Development of Ultra-precision Positioning Technology Using High-resolution Interpolation Algorithm (고체배 알고리즘을 이용한 초정밀 위치즉정기술 개발)

  • 이종혁;배준영;이상룡
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.117-124
    • /
    • 2004
  • Recently, nano-methodology is increasingly important as the ruler for measuring nano-technology, and we applied the linear encoder to nano-methodology. The quadrature output in the linear encoder has an effect on increasing the resolution in some techniques. Already, various interpolation techniques based on the quadrature signal have applied to the precision servo system. In this paper, we propose a new interpolation algorithm for ultra-precision positioning in the low speed with simulation by MATLAB SIMULINK. This method modified previous methods and was properly designed for some given control system. To verify, we first fulfilled the encoder signal test to find main parameters fer the signal transformation, then we proved the proposed interpolation algorithm by experiments, which show that the result of the interpolation algorithm corresponds with the measurement of the laser interferometer in 100 nm unit approximately. In addition, we can get more precise measurement by more accurate and noise-free signal. So we need to compensate imperfections in the encoder signal. After that, we will apply this algorithm to nano positioning system.

Improvement of Position Tacking Performance of Magnetostrictive Actuator Using Compressed Air Cooling (압축 공기 냉각을 이용한 자기 변형 액추에이터의 위치 추종 성능 향상)

  • Kwak, Yong-Kil;Hwang, Jin-Dong;Kim, Churl-Min;Kim, Sun-Ho;Ahn, Jung-Hwan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.4
    • /
    • pp.51-56
    • /
    • 2007
  • Precision positioning system with magnetostrictive actuator(MA) has widely used in manufacturing devices to control the positioning accuracy to meet the high load and stroke requirements. It has many advantage in comparison with piezoelectric actuator; high force, high strain, high efficient etc. But, the performance of Terfenol-D, the commercially available magnetostrictive material, is highly dependent on the prestress, magnetic field intensity and temperature. This paper present an experimental investigation of the temperature effect on displacement characteristics of magnetostrictive actuator. In this paper, compressed cold air is proposed to improve of positioning accuracy of magnetostrictive actuator. The compressed cold air cooling system has good cooling effect Experimental results confirming the effectiveness of the proposed cooling system as high precision positioning system are also has presented in this paper.

High Speed Tool Feed System by the Mechanism of Ball Screw and Servo Motor (볼 나사와 서보모터 메커니즘에 의한 고속 TOOL 이송장치)

  • 김성식;김경석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.76-82
    • /
    • 1998
  • In this study, the Ball screw and Servo motor Mechanism is considered as a High Speed Tool Feed System for the machining of a piston of a reciprocating engine. For the machining of a piston, that shapes oval, high speed servo mechanism is needed as a positioning of a cutting tool, and the stroke of tool is 0.1 mm ~ 1 mm. Ball screw and servo motor Mechanism is available very much because this mechanism is used widely in general machine. This Mechanism has been designed with the use of the decrease in mass and partial wear of the ball screw for high speed positioning of tool. Also the periodic learning control method with the inverse transfer function compensation has been applied to the positioning control for the high accuracy positioning of tool. These applications lead the achievement of the machining of a piston with an accuracy of 5${\mu}{\textrm}{m}$ at 2500 rpm in CNC turning.

  • PDF

The Couplings for ball-screw on high precision positioning (고정도 이송을 위한 공기정압커플링에 관한 연구)

  • 황성철;전도현;이득우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.161-166
    • /
    • 2002
  • Recently, researches on precision machining of nato-order, especially in the field of optical components and semi-conductors have been under development very actively. A accuracy of machining and positioning in a critical issue in ultra-precision machining. This paper proposes a new positioning system which can give excellent dynamic characteristics and reduce errors in horizontal, vertical, pitching, and yawing motions. In this paper, we suggest a connecting mechanism (the couplings) to reduce motion errors such as chatter and runout while preserving the positioning accuracy. We verified the good performance in the new connecting systems with various coupling types, which we classified into the fixed type, the spring type, the aeroctatic-nozzle type, and the aeroctatic-porous type according to the way of reducing the chatter and error.

  • PDF

Experiment of the Precision micro-positioning stage (초정밀 마이크로 위치결정 스테이지의 제작 및 평가)

  • Han, C. S.;Paek, S.;No, M. K.;Lee, C. H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.244-247
    • /
    • 2002
  • The performance of the precision micro-positioning 4-dof stage is presented. The compact design utilizes the monolithic mechanism to achieve the translation in the Z axis and rotation in the $\theta$ z, $\theta$ x and $\theta$ y axes with high stiffness and high damping. Hysteresis, nonlinearity, and drift of the piezoelectric effects are improved by incorporating the sensors in a feedback control. Experiments demonstrate that the micro-positioning stage is capable of 2nm resolution over the travel range of 25$\mu\textrm$ m in the Z axis, 0.0l7 $\mu\textrm$ rad resolution over the 170$\mu\textrm$ rad in the $\theta$ z and 0.011 $\mu\textrm$ rad resolution over the $\mu\textrm$ rad in the $\theta$ x and $\theta$ y axes. The cross-axis interferences among the axes are at a noise range. This stage is available for positioning error compensation of the XY stage with large stroke.

  • PDF

A Development of Micro-Positioning Grinding Table using Piezoelectric Voltage Feedback (압전전압 궤환에 의한 미세구동 연삭테이블의 개발)

  • Nam, Soo-Ryong;Kim, Jeong-Du
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.2
    • /
    • pp.48-58
    • /
    • 1995
  • A micro positioning system using piezoelectric actuators have very wide application region such as ultra-precision machine tool, optical device, measurement systen. In order ro keep a high precision displacement resolution, they use a position sensor and feedback the error. From the practical point of view, a high-resolution displacement sensor system are very expensive and difficult to guarantee such sensitive sensors work properly in the hard opera- tion environment of industry. In this study, a micro-positioning grinding table which does not require position sensor but uses piezoelectric voltage feedback, has been developed. It is driven by hystersis-considering reference input voltage which calculated from computer and then uses actuator/sensor characteristics of piezoelectric materials. From the result of experiments we proved a fast and stable response of micro-positioning system and suggested efficient technique to control the piezoelectric actuator. And through grinding experiments, it is revealed that a characteristics of ground surfaces transient to plastic deformation as extremely small depth of grinding.

  • PDF

AP Selection Criteria for UAV High-precision Indoor Positioning based on IEEE 802.11 RSSI Measurement (IEEE 802.11 RSSI 기반 무인비행로봇 실내측위를 위한 AP 선택 기법)

  • Hwang, Jun Gyu;Park, Joon Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.12
    • /
    • pp.1204-1208
    • /
    • 2014
  • As required performance of UAV (Unmanned Aerial Vehicle) becomes more complex and complicated, required positioning accuracy is becoming more and more higher. GPS is a reliable world wide positioning providing system. Therefore, UAV generally acquires position information from GPS. But when GPS is not available such as too weak signal or too less GPS satellites environments, UAV needs alternative positioning system such as network positioning system. RSSI (Received Signal Strength Indicator) based positioning, which is one method of network positioning technologies, determines its position using RSSI measurements containing distance information from AP (Access Point)s. In that method, a selected AP's configuration has strong and tight relationship with its positioning errors. In this paper, for, we additionally account AP's configuration information by adopting DOP (Dilution of Precision) into AP selection procedures and provide more accurate RSSI based positioning results.

Design of a 6-DOF Stage for Precision Positioning and Large Force Generation (정밀 위치 결정 및 고하중 부담 능력을 지닌 6-자유도 스테이지의 설계)

  • Shin, Hyun-Pyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.1
    • /
    • pp.105-112
    • /
    • 2013
  • This paper presents the structural design and finite element analysis of precision stage based on a double triangular parallel mechanism for precision positioning and large force generation. Recently, with the acceleration of miniaturization in mobile appliances, the demand for precision aligning and bonding has been increasing. Such processes require both high precision and large force generation, which are difficult to obtain simultaneously. This study aimed at constructing a precision stage that has high precision, long stroke, and large force generation. Actuators were tactically placed and flexure hinges were carefully designed by optimization process to constitute a parallel mechanism with a double triangular configuration. The three actuators in the inner triangle function as an in-plane positioner, whereas the three actuators in the outer triangle as an out-of-plane positioner. Finite element analysis is performed to validate load carrying performances of the developed precision stage.