• Title/Summary/Keyword: High-Precision

Search Result 6,194, Processing Time 0.039 seconds

A study on the Large High Speed Press Plunger Structure and Dynamic Bottom Dead Center Displacement (대형 고속프레스 플런저 구조와 동적 하사점 변위량에 대한 연구)

  • Seung-Soo Kim;Chun-Kyu Lee
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.40-45
    • /
    • 2022
  • The EV electric vehicle market is growing rapidly worldwide. An electric vehicle means a vehicle that uses energy charged through an electricity source as power. The precision of the press is important to mass-produce the drive motor, which is a key component of the electric vehicle. The size of the driving motor is increasing, and The size of the mold is also growing. In this study, the precision of large high-speed presses for mass production of driving motors was measured. A study was conducted on the measurement method of press and the analysis of measurement data. A drive motor is a component that transmits power by converting electrical energy into kinetic energy. EV driven motors have key material properties to improve efficiency. The material properties are the thickness of the material. As a method for improving performance, use a 0.2mm thin steel sheet. Mold is also becoming larger. As the mold grows, the size of the high-speed press for mass production of the driving motor is also increasing. Also, the precision of the press is the most important because it uses a thin iron plate material. So the importance of large press precision is being emphasized. In this study, the effect of large high-speed press structure on precision was verified

Development of High Speed & Precision Mould/Die Machining Center (고속.고정밀 금형가공센터 개발)

  • 최원선;김태형;이재윤
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.87-94
    • /
    • 2002
  • In order to manufacture a precision mold/die by machining, users need high speed & precision mold/die machining center. So, for development of this machine, we intend to use linear motor that is instead of ball-screw, servo-motor and coupling, high-speed spindle of pressurized air journal bearing and composite materials. In this paper we research column moving type and table moving type. The former is mainly piling 3 axes on one moving body, the latter is consist of two independent carriages. Both types are available to high speed & precision machine, but we finally draw a conclusion column moving type due to an advantage of high-speed control of linear motor.

  • PDF

Development of High Speed & Precision Mould/Die Machining Center III (고속.고정밀 금형가공센터 개발 III)

  • 최원선;이창호;박보선;김태형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.429-435
    • /
    • 2002
  • In order to manufacture a precision mold/die by machining, users need high speed & precision mold/die machining center. So, for development of this machine, we intend to use linear motor that is instead of ball-screw, servo-motor and coupling, high-speed spindle of pressurized air journal bearing and composite materials. In this paper we research column moving type and table moving type. The former is mainly piling 3 axes on one moving body, the latter is consist of two independent carriages. Both types are available to high speed & precision machine, but we finally draw a conclusion column moving type due to an advantage of high-speed control of linear motor.

  • PDF

High Precision Electromagnetic Momentum Positioning with Current Loop

  • ZHANG, Chao;ZHAO, Yufei;WU, Hong
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.150-154
    • /
    • 2017
  • A novel high precision spatial positioning method utilizing the electromagnetic momentum, i.e., Electromagnetic Momentum Positioning (EMP), is proposed in this paper. By measuring the momentum of the electromagnetic field around the small current loop, the relative position between the sensor and the current loop is calculated. This method is particularly suitable for the application of close-range and high-precision positioning, e.g., data gloves and medical devices in personal healthcare, etc. The simulation results show that EMP method can give a high accuracy with the positioning error less than 1 mm, which is better than the traditional magnetic positioning devices with the error greater than 1 cm. This method lays the foundation for the application of data gloves to meet the accurate positioning requirement, such as the high precision interaction in Virtual Reality (VR), Augmented Reality (AR) and personal wearable devices network.

A Study on Heat Generation and Machining Accuracy According to Material of Ultra-precision Machining (초정밀가공의 재질에 따른 발열과 가공정밀도에 관한 연구)

  • Lee, Gyung-Il;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.63-68
    • /
    • 2018
  • At present, ultra-precision cutting technology has been studied in Korean research institutes, focusing on development of ultra-precision cutting tool technology and ultra-precision control engineering. However, the developed technologies are still far behind advanced countries. It focuses on metals including aluminum, copper and nickel, and nonmetals including plastics, silicone and germanium which require high precision while using a lathe. It is hard to implement high precision by grinding the aforementioned materials. To address the issue, the ultra-precision cutting technology has been developing by using ultra-precision machine tools very accurate and strong, and diamond tools highly abrasion-resistant. To address this issue, this study aims to conduct ultra-precision cutting by using ECTS (Error Compensation Tool Servo) to improve motion precision of elements and components, and compensate for motion errors in real time. An IR camera is used for analyzing cutting accuracy differences depending on the heat generated in diamond tools in cutting to examine the heat generated in cutting to study cutting accuracy depending on generated heat.

광간섭법을 이용한 절대높이 측정 정밀도 향상에 관한 연구

  • 안근식;장경영;문희관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.493-498
    • /
    • 1993
  • This paper proposes a high precision measurement technique to obtain the height of gage block. The proposed technique is consisted of two steps : In the first step, laser position transducer and electric micrometer are adopted to obtain a coarse value of the height of gage block, and then, second, heterodyne laser interferometry is adopted to acquire the precision value. The experiment results show that accuract in the order of a few nanometer is achieved for the gage blacks of as high as a few millimeter.

  • PDF

반복 제어법을 이용한 정밀 제어

  • 전도영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.461-465
    • /
    • 1996
  • In servo systems such as the computer hard disk, surface mountiong device and robot manipulators, the high precision and high speed are increasingly demanding. In these examples, the repeatable errors exist and the repetitive controller removes these errors effectively by adding signals calculated from the previous cycle errors to the existing feedback controller. The experimental results of the position tracking control and contact force control show that the repetitive control effectively improves the precision of mechanical servo systems.

  • PDF

A Study on the Design of Ultra Precision Positioning Apparatus using FEM (I) (유한요소법을 이용한 초정밀 미동스테이지 설계에 관한 연구(I))

  • 김재열;윤성운;김항우;한재호;곽이구
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.190-194
    • /
    • 2001
  • Because, Piezo-electric transducer(PZT) transform electric energy into mechanical energy, it is a adequate material for positioning control and force control, take excellent properties as actuator with high speed and high performance. Recently, researches of ultra precision positioning using this PZT are advanced in. In this paper, we use a actuator of PZT, design a positioning apparatus with ultra precision position apparatus as hinge structure. Because of this purpose, before, we were confirmed in control properties of ultra precision stage by FEM method.

  • PDF