• Title/Summary/Keyword: High temperature tensile properties

Search Result 662, Processing Time 0.03 seconds

The properties of AR(Alkali Resistant)-glass fiber by zirconia contents (지르코니아 함량에 따른 내알칼리 유리섬유의 특성)

  • Lee, Ji-Sun;Lim, Tae-Young;Lee, Mi-Jai;Hwang, Jonghee;Kim, Jin-Ho;Hyun, Soong-Keun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.6
    • /
    • pp.263-271
    • /
    • 2015
  • Commercial AR(Alkali Resistant)-glass fiber has a good chemical resistant property, but also has a problem of difficulty in fiberizing process because of high viscosity in melted glass compare with E-glass fiber which is the most widely used for reinforced fiber of composite materials. In this study, we fabricated AR-glass fiber with low zirconia contents compare with commercial AR-glass fiber relatively, and measured properties against E-glass fiber. We obtained transparent clear glass with zirconia contents of 0.5~16 wt% by melting at $1600^{\circ}C$ for 2 hours. These AR-glass samples had high visible transmittance of 89~90 %, softening temperature of $703{\sim}887^{\circ}C$. And softening temperatures of them were increased according to the increasing zirconia contents. Compare with E-glass, AR-glass contains 4 wt% zirconia has different value of $-94^{\circ}C$ in softening temperature, $+68^{\circ}C$ at Log3 temperature and $-13^{\circ}C$ at Log5 temperature in viscosity. We could verify good alkali resistant property of the AR-glass fiber with SEM after dipping in alkali solution for 48~72 hours, and also high tensile strength, 1.7 times compare with E-glass fiber at 48 hours and 2.2 times at 72 hours. We conclude that this AR-glass fiber can be widely used as general alkali resistant glass fiber because of easy manufacturing condition and good properties even though it has low zirconia contents.

Physical Properties of Polypropylene Foam Blended with Thermally Expandable Microcapsules (열팽창캡슐 적용 발포폴리프로필렌의 물리적 특성 비교)

  • Ha, Jin Uk;Jeoung, Sun Kyung;Lee, Pyoung-Chan;Hwang, Ye Jin;Nam, Byung Kook;Han, In-Soo;Kwak, Sung Bok;Lee, Jae Yong
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.64-70
    • /
    • 2015
  • Thermally expandable microcapsules (TEMs) can be expanded upon heating since the activation energy of liquid hydrocarbon at the core of the TEMs increased at high temperature. Due to this property, TEMs are widely used in the industry as blowing agents or light-weight fillers. In this article, chemical blowing agent and TEM were used for making polypropylene (PP) foams, and their mechanical properties were compared. Physical properties (tensile strength, impact strength etc.) of PP foams decreased with increasing the amount of blowing agents while weight of specimen decreased. However, PP foam produced with TEMs showed higher impact strength than the one with a chemical blowing agent. In order to figure out the difference of impact strength, the morphology of PP foamed was investigated. Expanding properties of TEM can be controlled by changing core back distance.

Catalytic Recycling of Waste Polymer -Recycling of Flexible Polyurethane Foam Wastes by Catalytic Glycolysis- (촉매를 이용한 폐고분자 물질의 자원화-촉매글리콜분해에 의한 연질 폴리우레탄폼 폐기물의 재활용-)

  • Park, Chong-Rae;Kim, Seong-Ick;Kim, Young-Chul;Park, Nam-Cook;Seo, Gon
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.920-926
    • /
    • 1997
  • The catalytic glycolysis process is the method of chemical recycling where the polyol and carbamate compounds recovered by transesterification reaction are reused to produce new polyurethane foams. In this work, ethylene glycol, diethylene glycol, and 1,4-butanediol were used to decompose polyurethane foams and various metallic acetates were provided as catalysts. The catalytic glycolsis of polyurethane foams was taken place in the reaction temperature of $180{\sim}200^{\circ}C$. The reaction rates of catalytic glycolysis reaction were indicated by the viscosity of the reaction products at different reaction times. IR and GPC analysis showed the types and the molecular weight distributions of the products. The catalytic glycolysis was profitable for using ethyleneglycol at high temperature. The activities of the catalysts are suitable for K, Na, Tl acetate, and the products are composed of comparatively high-contained amine compounds and carbamate compounds. In the case of Sr acetate and Quinoline, the reaction rate was somewhat low. However, the content of polyol was high and the content of the side-products was low. The foams which were prepared by blending up to 20wt% of recovered polyol with virgin polyols showed better physical properties in tensile strength, hardness, tear strength, and compressive strength compared to those of polyurethane foams from virgin polyol.

  • PDF

On the dimensional stabilization of woods with treatment of Polyethylene Glycol-400 (폴리에치렌 글리콜-400에 의한 목재(木材)의 칫수안정화(安定化))

  • Cho, Nam-Seok;Jo, Jea-Myeong;Bae, Kyu-Yong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.3-15
    • /
    • 1975
  • How to stabilize wood against shrinking and swelling in variable atmospheric moisture conditions is important to the wood-using industry and a challenge to research. Polyethylene glycol stabilize wood by bulking the fiber. PEG also serve as a chemical seasoning agent, suppress decay in high concentrations, and have slight effect on physical properties, gluing or finishing. The study designed to determine the effect of PEG-400 on the dimensional stabilization of local hardwoods for wood carvings that could supply a greatly expanding tourist trade and making curved furniture parts, lamp stands and other decorative objects, and possible gunstock. The species examined were 6 species, Seo-Namoo (Carpinus laxiflora), Cheungcheung-Namoo (Cornus controversa), Gorosae-Namoo (Acer mono), Karae-Namoo (Juglans mandshurica), Jolcham-Namoo (Quercusserrata) and Sanbud-Namoo (Prunus sargentii), used as block of 5cm thick radially to the grain, 7cm wide tangentially, and 70cm long parallel to the wood grain. All these test piecies were conditioned above the fiber saturation point before impregnation. The stabilization effects were determined for PEG-400 treated woods in a 50 percent solution for 20 days. The following conclusions were obtained. PEG retentions increased with treating time. It was more effective to treat at 60$^{\circ}C$ than at room temperature. In degree of PEG-400 impregnation on species, Cheungcheung-Namoo havinglow specific gravity had the highest retentions, 68.77% but the lowest, 56.33% was shown in Jolcham-Namoo with high specific gravity. Specific gravity of treated wood increased considerably with effectiveness of polymer loading. The increases in specific gravity were 5.36 to 13.16 percent. The highest was Jolcham-Namoo, the lowest Karae-Namoo. On the dimensional stability, a 40 percent of effectiveness of polymer loading was just as effective as 60 percent in reduction in water absorptivity (RWA), antishrinkage efficiency (ASE) and antiswelling efficiency (AE), and from over 60 percent they increased more rapidly. Also species response varied considerably. ASE was 30.12 to 69.97 percent tangentially and 27.86 to 56.37 percent radially, AE 34.06 to 73.76 percent tangentially and 30.11 to 70.12 percent radially, and RWA 42.31 to 65.32 percent. No differences in volume swelling among the 6 species were observed. Its values were ranged from 14.98 to 19.55 percent and also increased with PEG retentions. On the mechanical properties, the strengths very much decreased with PEG-400 loadings as shown in Figure 12; that were 11.41 to 22.90 percent in compression, 21.61 to 34.35 percent in bending and 22.83 to 36.83 percent in tensile strength. PEG retention in cell wall was less than 1 percent and the most of PEG were immersed in cell lumen. Except for Korae-Namoo, effectivenesses of polymer loading were as much high as 61.58 to 75.02 percent. This is believed to be due to the effect of PEG-400 on excellant dimensional stability of treated woods.

  • PDF

Hybrid Nanostructure-dependent Mechanical Properties and Crystallization Behaviors of Polypropylene/Clay Nanocomposites (폴리프로필렌/점토 나노복합체의 하이브리드 나노구조에 따른 기계적 성질 및 결정화거동 변화)

  • Choi, Ki-Woon;Lee, Han-Sup;Kang, Bok-Choon;Yang, Hoi-Chang
    • Polymer(Korea)
    • /
    • v.34 no.4
    • /
    • pp.294-299
    • /
    • 2010
  • Clay-loaded polypropylene (PP) nanocomposites were fabricated via melt-compounding of two molecular weight ($M_w$) PPs (140 and 410 kg/mol) and octadecylammine-treated clay (C18MMT), with the assistance of maleic anhydride-grafted PP(PP-MAH), respectively, at $170^{\circ}C$ and $190^{\circ}C$. At both melt-compounding temperatures, the low-$M_w$ PP tends to easily diffuse into silicate layers, especially in the presence of the mobile PP-MAH, resulting in a marked increase in silicate layer spacing (above 58 $\AA$), when compared to 27 $\AA$ in the high-$M_w$ PP-based system. Due to relatively lower melt-viscosity of the low-$M_w$ PP-based system, however, there existed quasi-stacked clay aggregates with a thickness of 60~80 nm, while the high-$M_w$ PP-based nanocomposites showed relatively homogeneous dispersion of clays. The different morphologies are mainly related to changes in the viscoelastic properties of PPs, dependent on the processing temperature and their $M_{w}s$. The slight differences in nanocomposites induce discernible crystallization and mechanical behaviors. High-$M_w$ PP-based nanocomposites containing 1~3 wt% C18MMT showed improvement in both tensile strength and modulus, while maintaining the inherent ductility of pure PP.

Properties of rin Resistance of High Performance Concrete with Varying Contents of Polypropylene Fiber and Specimen Size (폴리프로필렌 섬유의 혼입률 및 부재크기 변화에 따른 고성능 콘크리트의 내화 특성)

  • 한천구;양성환;이병열;황인성;전선천
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.449-456
    • /
    • 2002
  • Recently, the application of high strength and high performance concrete has been gradually increased as an important construction material for high rise and huge scaled construction. However, high performance concrete has undesirable characteristics of spalling subjected to high temperature due to its dense microstructure content. A spalling by fire brings surface failure and falling off concrete member. It is considered that spalling by fire should be taken into account for the safety of the concrete structure under fire. Therefore, in this paper, tests are carried out using high performance concrete containing polypropylene(PP) fiber in order to improve the fire resistance performance. PP fiber contents and member sizes are varied. According to experimental results, as for the influence of PP fiber contents, all the test specimens without PP fiber show entire failure in W/C of 35%, while they show nearly sound shape except some kinds of surface fracture in W/C of 55%. When PP fiber is contained more than 0.07%, favorable prevention effects of spatting by fire are obtained. As for the effects of test specimens size, it tends to increase the possibilities of spatting by fire as test specimens become larger. And spatting by fire at the edge of test specimens occurs more frequently than at the surface of test specimens. Residual compressive and tensile strength shows 45∼65 % of its original strength at W/C of 35%, and 30∼40% at W/C of 55 %.

Studies on the Physical and Thermal Properties of the Chitosan/Gelatin Blend (키토산/젤라틴 블랜드 폴리머의 물리적 및 열적 특성에 대한 연구)

  • Kim, Byung-Ho;Park, Jang-Woo
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.30-37
    • /
    • 2005
  • To mass-produce useful biopolymer films, chitosan/gelatin blend films were prepared by solution casting method. Effects of mixing ratio, tensile strength (TS), elongation (E) at break, total color difference (${\Dalta}E$), opacity, water vapor permeability (WVP), oxygen permeability (OP), and thermal properties on chitosan/gelatin blend films properties were investigated. TS, E, ${\Dalta}E$, opacity, WVP, and OP values were 58.24-22.01 MPa, 13.11-24.67%, 1.86-17.45, 0.3104-1.2161 nmO.D./${\mu}m$, $1.6875-1.7225ng{\cdot}m/m^{2}{\cdot}s{\cdot}Pa$, and $2.2380{\times}10^{-7}-2.2975{\times}10^{-7}\;mL{\cdot}{\mu}m/m^{2}{\cdot}s{\cdot}Pa$, respectively. TS of blend films decreased, while E, ${\Dalta}E$, and opacity increased with increasing chitosan content. WVP of blend films did not show any significant relationship with mixing ratio and thickness of blend films. Miscibility of films was examined over entire composition range by thermogravimetric analyzer (TGA) and dynamic mechanical analyzer (DMA). TGA results showed gelatin is more thermally stable than chitosan and some interactions among functional groups of two biopolymers. Glass transition temperature $(T_{2})$ of films as determined by DMA decreased with increasing content of chitosan in the blend. Results of thermal analysis indicate high miscibility among polymer components in the blend.

Experimental Study on the Fire Performance of PC Slab by the Bearing Length (걸침길이에 따른 PC 슬래브의 화재성능에 관한 실험적 연구)

  • Park, Siyoung;Kang, Thomas H.K.;Lee, Ho-Wook;Gwak, Si-Young;Park, Jun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.14-22
    • /
    • 2022
  • In this study, a fire test was conducted to evaluate the fire performance of precast concrete (PC) slabs in an outdoor environment in response to the increase in fire incidents caused by the growth of warehouses. Prior to the field fire test, the tensile yield strength of the tendon at elevated temperatures was tested to analyze the mechanical properties. Also, by referring to previous studies, the thermal properties of tendon and the mechanical and thermal properties of concrete were investigated. A field fire test was conducted to analyze the structural and fire performance of two identical slabs with 50 and 150 mm bearing length. As the bearing length increased, deflection and horizontal displacement decreased. The fire test lasted for 200 minutes without the collapse of slabs, validating current codes. Based on the structural performance which maintained even with concrete spalling and rupture of some tendons, the bonded method is assumed to be practical in pre-tensioned PC slabs. The results of fire test are expected to be utilized in evaluating the fire performance of PC slabs in warehouses.

The Quality Properties of Mortar for Using Hydraulic Modification Sulfur as Admixture for Cement (개질유황을 시멘트 대체 혼화재로 사용하기 위한 모르타르의 품질특성)

  • Kim, Ki-Hyung;Shin, Do-Chul;Jung, Ho-Jin;Lee, Jae-Nam;Kim, Byiung-Kwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.81-88
    • /
    • 2011
  • This study ascertained the possibility of use of sulfur abstracted from waste sulfur as a construction material through modification process and manufacturing high efficiency modification sulfur with superior quality on dispersibility and hydrophilic in normal temperature. Mechanic, behavior and chemical durability of mortar with added modification sulfur. The results of the study are as follows. The fluidity of mortar mixed with modification sulfur and compressive strength decreased as ratio of mixing of them increases. Flexural, tensile and bond strength of the mortar are also improved and shrinkage of it increases. Especially chemical durability of the mortar showed excellent resistance with the increase of ratio of mixing. Therefore this research has confirmed the modification sulfur can be used as a addmixture for cement.

  • PDF

Fracture Behaviour of Lubricants in ABS Terpolymer (ABS 중에 첨가된 저분자 화합물의 파단 거동에 미치는 영향)

  • Don, Yoon-Seung;Shim, Mi-Ja;Kim, Sang-Wook
    • Applied Chemistry for Engineering
    • /
    • v.5 no.5
    • /
    • pp.878-888
    • /
    • 1994
  • In order to investigate the fracture behavior of ABS terpolymer under the tension and impact load, varing the content of rubber, molecular weight of SAN, content and kinds of lubricant, tension speed, the mechanical properties were measured and SEM pictures of fracture area were taken. Under the tension, the tensile strength increased as rubber content and lubricant content decreased, while molecular weight and tension speed increased. The deformation of area near fracture site did not occur as rubber content, tension speed and molecular weight decreased and liquid lubricant was used. And in the shape of fracture seemed phase seperation. Under the impact load, the notched izod impact strength increased as rubber content, molecular weight, ambient temperature and lubricant content increased. In the SEM picture, the strength was high white the fracture surface was small.

  • PDF