DOI QR코드

DOI QR Code

걸침길이에 따른 PC 슬래브의 화재성능에 관한 실험적 연구

Experimental Study on the Fire Performance of PC Slab by the Bearing Length

  • 박시영 (서울대학교 건축학과) ;
  • 강현구 (서울대학교 건축학과) ;
  • 이호욱 (대구서부소방서) ;
  • 곽시영 (대구서부소방서) ;
  • 박준규 (대구서부소방서)
  • 투고 : 2022.06.16
  • 심사 : 2022.09.17
  • 발행 : 2022.12.31

초록

본 연구에서는 물류창고시설의 개발 증가에 따른 화재사고 증가에 대응하여 실외 환경에서의 PC 슬래브의 화재성능 평가를 위한 실물대 화재실험을 실시하였다. 실외 화재실험에 앞서 고온에서 강연선의 인장 항복 강도를 시험하여 기계적 물성을 분석하였다. 또한, 이전 연구들을 참고하여 강연선의 열적 특성과 콘크리트의 기계적, 열적 특성을 조사하였다. 실외 화재실험은 걸침길이가 50mm, 150mm인 동일한 슬래브 2개의 구조성능 및 내화성능을 분석하기 위해 수행되었다. 걸침길이가 길어질수록 처짐은 감소하였고, 걸침길이에 대한 수평 변위 또한 감소하였다. 200분 가량 진행된 실험에서 슬래브의 탈락이 발생하지 않아 현행 기준이 적절함이 확인되었다. 콘크리트의 폭렬 현상이 발생하여 강연선 일부가 끊어졌으나, 구조성능은 지속되었기 때문에 부착식 공법을 이용한 PSC 슬래브의 실용성을 확인할 수 있었다. 이에 따라, 물류창고 PC 슬래브의 내화성능 판단을 위한 기초 자료로 활용될 수 있을 것으로 기대된다.

In this study, a fire test was conducted to evaluate the fire performance of precast concrete (PC) slabs in an outdoor environment in response to the increase in fire incidents caused by the growth of warehouses. Prior to the field fire test, the tensile yield strength of the tendon at elevated temperatures was tested to analyze the mechanical properties. Also, by referring to previous studies, the thermal properties of tendon and the mechanical and thermal properties of concrete were investigated. A field fire test was conducted to analyze the structural and fire performance of two identical slabs with 50 and 150 mm bearing length. As the bearing length increased, deflection and horizontal displacement decreased. The fire test lasted for 200 minutes without the collapse of slabs, validating current codes. Based on the structural performance which maintained even with concrete spalling and rupture of some tendons, the bonded method is assumed to be practical in pre-tensioned PC slabs. The results of fire test are expected to be utilized in evaluating the fire performance of PC slabs in warehouses.

키워드

과제정보

본 연구는 대구서부소방서, 서울대학교, 한국원자력안전재단의 지원(No. 2003007-0120-CG100)을 받아 수행되었습니다. 이에 감사드립니다.

참고문헌

  1. ASTM E119 (2020), Standard Test Methods for Fire Tests of Building Construction and Materials, ASTM Committee on Standards, West Conshohocken, PA.
  2. Aslani, F., and Bastami, M. (2011), Constitutive Relationships for Normal- and High-Strength Concrete at Elevated Temperatures, ACI Materials, 108(4), 355-364.
  3. Bailey, C.G. and Ellobody, E. (2009), Fire tests on bonded post-tensioned concrete slabs, Engineering Structures, 31, 686-696. https://doi.org/10.1016/j.engstruct.2008.11.009
  4. British Standards (1987), Fire Tests on Building Materials and Structures - Part 20: Method for Determination of the Fire Resistance of Elements of Construction (General Principles), BS 476-3: 1987, BSi, UK, 1987.
  5. Du, Y., Peng, J.-z., Liew, J.Y.R., and Li, G.-q. (2018), Mechanical properties of high tensile steel cables at elevated temperatures, Construction and Building Materials, 182, 52-65. https://doi.org/10.1016/j.conbuildmat.2018.06.012
  6. Dwaikat, M.B. and Kodur, V.K.R. (2010), Fire Induced Spalling in High Strength Concrete Beams, Fire Technology, 46, 251-274. https://doi.org/10.1007/s10694-009-0088-6
  7. EN 1992-1-2 (2004), Eurocode 2: Design of concrete structures - Part 1-2: General rules - Structural fire design, The European Union, Brussels, Belgium.
  8. Gawin, D., Pesavento, F., and Schrefler, B.A. (2003), Modelling of hygro-thermal behaviour of concrete at high temperature with thermo-chemical and mechanical material degradation, Comput. Methods Appl. Mech. Engrg., 192, 1731-1771. https://doi.org/10.1016/S0045-7825(03)00200-7
  9. ICC (2017), 2018 International Building Code, Country Club Hills, IL.
  10. International Standard ISO 834-1 (1999), Fire-resistance tests - Elements of building construction - Part 1: General requirement, ISO, Geneva, Switzerland.
  11. Joint ACI-TMS Committee 216 (2014), Code Requirements for Determining Fire Resistance of Concrete and Mansonry Construction Assembles (ACI 216.1-14), American Concrete Institute, Farmington Hills, MI.
  12. KDS 14 20 62 (2022), Precast Concrete Structure Design Manual, Ministry of Land.
  13. Kodur, V.K.R. and Dwaikat, M.B. (2010), Effect of Fire Induced Restraint on Fire Resistance of Reinforced Concrete Beams, Journal of Structural Fire Engineering, 1(2), 73- 88. https://doi.org/10.1260/2040-2317.1.2.73
  14. KS F 2257-1 (2019), Methods of fire resistance test for elements of building construction - general requirements, Korean Standards, Korea.
  15. Kwon, H., Kim, D., Kang, S., and Park, H. (2021), Analyzing the effects of logistics facility supply changes and policy implementations, Korea Transport Institute.
  16. Liu, J.-C., Tan, K.H., and Yao, Y. (2018), A new perspective on nature of fire-induced spalling in concrete, Construction and Building Materials, 184, 581-590. https://doi.org/10.1016/j.conbuildmat.2018.06.204
  17. Shakya, A.M. and Kodur, V.K.R. (2016), Effect of temperature on the mechanical properties of low relaxation seven-wire prestressing strand, Construction and Building Materials, 124, 74-84. https://doi.org/10.1016/j.conbuildmat.2016.07.080
  18. Zheng, W. and Hou, X. (2008), Experiment and Analysis on the Mechanical Behaviour of PC Simply-supported Slabs Subjected to Fire, Advances in Structural Engineering, 11(1), 71-89. https://doi.org/10.1260/136943308784069513