Studies on the Physical and Thermal Properties of the Chitosan/Gelatin Blend

키토산/젤라틴 블랜드 폴리머의 물리적 및 열적 특성에 대한 연구

  • Kim, Byung-Ho (Department of Food and Biotechnology, and Food and Bio-industrial Research Center, Hankyong National University) ;
  • Park, Jang-Woo (Department of Food and Biotechnology, and Food and Bio-industrial Research Center, Hankyong National University)
  • 김병호 (국립한경대학교 식품생물공학과 및 식품생물산업연구소) ;
  • 박장우 (국립한경대학교 식품생물공학과 및 식품생물산업연구소)
  • Published : 2005.02.28

Abstract

To mass-produce useful biopolymer films, chitosan/gelatin blend films were prepared by solution casting method. Effects of mixing ratio, tensile strength (TS), elongation (E) at break, total color difference (${\Dalta}E$), opacity, water vapor permeability (WVP), oxygen permeability (OP), and thermal properties on chitosan/gelatin blend films properties were investigated. TS, E, ${\Dalta}E$, opacity, WVP, and OP values were 58.24-22.01 MPa, 13.11-24.67%, 1.86-17.45, 0.3104-1.2161 nmO.D./${\mu}m$, $1.6875-1.7225ng{\cdot}m/m^{2}{\cdot}s{\cdot}Pa$, and $2.2380{\times}10^{-7}-2.2975{\times}10^{-7}\;mL{\cdot}{\mu}m/m^{2}{\cdot}s{\cdot}Pa$, respectively. TS of blend films decreased, while E, ${\Dalta}E$, and opacity increased with increasing chitosan content. WVP of blend films did not show any significant relationship with mixing ratio and thickness of blend films. Miscibility of films was examined over entire composition range by thermogravimetric analyzer (TGA) and dynamic mechanical analyzer (DMA). TGA results showed gelatin is more thermally stable than chitosan and some interactions among functional groups of two biopolymers. Glass transition temperature $(T_{2})$ of films as determined by DMA decreased with increasing content of chitosan in the blend. Results of thermal analysis indicate high miscibility among polymer components in the blend.

유용한 생고분자 필름을 제조하기 위한 목적으로 키토산과 젤라틴을 이용하여 solution casting 방법으로 혼합비율에 따라 혼합필름을 제조하였다. 또한 키토산/젤라틴 혼합필름의 인장 강도, 신장률, 색도, 불투명도, 수분 및 산소 투과도와 같은 물리적인 특성과 열적 특성에 있어 혼합비율이 미치는 효과에 대하여 조사하였다. 혼합비율별로 제조된 키토산/젤라틴 혼합필름의 인장강도는 58.24MPa에서 22.01MPa로 점차적으로 감소 하는 경향을 나타내었고, 신장률은 13.11%에서 24.67%로 인장 강도 결과와는 다르게 증가되는 경향을 보였다. 필름의 외관을 결정하는 중요한 특성인 색도 측정 결과, L 값의 경우 키토산 함량이 증가할수록 감소되었고, a와 b 값은 L 값에 반비례로 증가되었다. 또한 키토산의 함량이 증가함에 따라 제조된 혼합 필름의 ${\Dalta}E$ 및 YI 값들은 키토산 함량 90%를 제외하고는 보다 높은 값들로 측정되었다. 혼합필름의 불투명도는 $0.3104nmO.D./{\mu}m$에서 $1.2161nmO.D./{\mu}m$의 범위로 측정되었다. 수분 투과도는 $1.6875ng{\cdot}m/m^{2}{\cdot}s{\cdot}Pa$에서 $1.7225ng{\cdot}m/m^{2}{\cdot}s{\cdot}Pa$로 측정되었지만, Duncan의 다중비교 분석결과로 키토산의 농도가 증가함에 따라 혼합필름의 수분 투과도는 유의적인(p<0.05) 차이를 나타내지 않았다. 산소 투과도는 혼합비율에 따라 $2.2380{\times}10^{-7}mL{\cdot}m/m^{2}{\cdot}s{\cdot}Pa$에서 $2.2975{\times}10^{-7}mL{\cdot}m/m^{2}{\cdot}s{\cdot}Pa$로 나타났다. 또한 열적 특성을 분석한 결과 혼합비율에 따라 유리전이온도는 단일 곡선을 나타내었고, 젤라틴의 함량이 증가함에 따라 유리전이온도는 증가하였기 때문에 이 결과들을 볼 때, 키토산과 젤라틴 고분자들 사이에 상용성이 있음을 알 수 있었다.

Keywords

References

  1. Krochta JM, Mulder-Johnsotn CD. Edible and biodegradable polymer films: challenges and opportunities. Food Technol. 51: 61-74 (1997)
  2. Deveaufort F, Quezada-Gallo J, Voilley A. Edible films and coatings: Tomorrow's packagings: A review. Crit. Rev. Food Sci. Nutr. 38: 299-313 (1998) https://doi.org/10.1080/10408699891274219
  3. Guilbert S, Gontard N, Gorris LGM. Prolonging the shelt-life of perishable food products using biodegradable films and coatings. Lebensm. -Wiss. u. -Technol. 29: 10-17 (1996) https://doi.org/10.1006/fstl.1996.0002
  4. Kim DH, Lee C, Kim KO, Lee YC. Physicochemical and sensory properties of water soluble chitosan. Korean. J. Food Sci. Technol. 31: 83-90 (1999)
  5. Cho JM, Park SK, Lee YS, Rhee CO. Effect of soy protein isolate and calcium chloride on the properties of water soluble chitosan film. J. Korean Soc. Agric. Chem. Biotechnol. 46: 113-116 (2003)
  6. Kienzle-Sterzer CA, Rodriguez-Sanchez D. Rha C. Mechanical properties of chitosan films: Effect of solvent acids. Makromol. Chem. 183: 1353-1359 (1982) https://doi.org/10.1002/macp.1982.021830528
  7. Caner C, Vergano PJ, Wiles JL. Chitosan film mechanical and permeation properties as affected by acid, plasticizer and storage. J. Food Sci. 63: 1049-1053 (1998)
  8. Kim JJ, Kim MJ, Jeon DW. Industrial application of chitinlchitosan. Polymer Sci. Technol. 8: 579-590 (1997)
  9. Lazaridou A, Biliaderis CG. Thennophysical properties of chitosan, chitosan-starch and chitosan-pullulan films near the glass transition. Carbyhyd. Polym. 48: 179-190 (2002) https://doi.org/10.1016/S0144-8617(01)00261-2
  10. Arvanitoyannis IS, Nakayama A, Aiba S. Chitosan and gelatin based edible filma: state diagrams, mechanical and permeation properties. Carbohyd. Polym. 37: 371-382 (1998) https://doi.org/10.1016/S0144-8617(98)00083-6
  11. Begin A, Calsteren MR. Antimicrobial films produced from chitosan. Int. J. Biol. Macromol. 26: 63-67 (1999) https://doi.org/10.1016/S0141-8130(99)00064-1
  12. Hoagland PD, Parris N. Chitodanlpectin laminated films. J. Agric. Food Chem. 44: 1915-1919 (1996) https://doi.org/10.1021/jf950162s
  13. Wong DWS, Gastineau FA, Gregordki KS, Tillin SJ, Pavlath AE. Chitodan-lipid films: Microstructure and surface energy. J. Agric. Food Chem. 40: 540-544 (1992) https://doi.org/10.1021/jf00016a002
  14. Ledward DA. Gelatin. pp.67-86. In: Handbook of Hydrocolloid. Phillips PO, Williams PA (eds). CRC Press, USA (2000)
  15. Clark AH, Ross-Murphy SB. Structural and mechanical properties of biopolymer gels. Adv. Polymer Sci. 83: 57-192 (1987) https://doi.org/10.1007/BFb0023332
  16. Oakenfull D, Pearce J, Burley W. Protein gelation. pp. 111-142. In: Food proteins and their applications. Damodaran S, Paraf A (eds). Marcel Dekker, USA (1997)
  17. Normand V, Muller S, Ravey JC, Parker A. Gelation kinetics of gelation: a master curve and network modeling. Macromolecules 33: 1063-1071 (2000) https://doi.org/10.1021/ma9909455
  18. Wu J, Chiu SC, Rearce EM, Kwei TK. Effects of phenolic compounds on gelation behavior of gelatin gels. J. Polym. Sci. Part A: Polym. Chem. 39: 224-231 (2000) https://doi.org/10.1002/1099-0518(20010101)39:1<224::AID-POLA250>3.0.CO;2-X
  19. Bigi A, Panzavolta S, Roveri N. Hydroxyapatite-gelatin films: a structural and mechanical characterization. Biomaterials 19: 739744 (1998)
  20. Bigi A, Bracci B, Cojazzi G, Panzavolta S, Roveri N. Drawn gelatin films with improved mechanical properties. Biomaterials 19: 2335-2340 (1998) https://doi.org/10.1016/S0142-9612(98)00149-5
  21. Sobral PJA, Menegalli FC, Hubinger MD, Roques MA. Mechanical, water vapor barrier and thermal properties of gelatin based edible films. Food Hydrocoll. 15: 423-432 (2001) https://doi.org/10.1016/S0268-005X(01)00061-3
  22. ASTM. Standard test methods for tensile properties of thin plastic sheeting (D 882-97). Vol. 8.01, pp. 163-171. In: Annual Book of ASTM Standards. American Society for Testing and Materials, Philadelphia, PA, USA (1999)
  23. BSI: Optical Methods for Measuring Brightness, Whiteness, Refectance and Opacity for paper. B.S. 4432, British Standards Institution, London, UK (1968)
  24. ASTM. Standard test methods for water vapor transmission of materials (E 96-95). Vol. 4.06, pp. 697-704. In: Annual Book of ASTM Standards. American Society for Testing and Materials, Philadelphia, PA, USA (1995)
  25. McHugh TH, Avena-Bustillos R, Krochta, lM. Hydrophilic edible films: Modified procedure for water vapor permeability and explanation of thickness effects. J. Food Sci. 58: 899-903 (1993) https://doi.org/10.1111/j.1365-2621.1993.tb09387.x
  26. Gennadios A, Weller CL, Gooding CH. Measurement errors in water vapor permeability of highly permeable, hydrophilic edible films. J. Food Eng. 2: 395-409 (1994)
  27. ASTM. Standard methods for oxygen gas transmission rate through plastic film and sheeting using a coulometric sensor (D3985-81). In: Annual Book of ASTM Standard. American Society for Testing and Materials, PA, USA (1991)
  28. Park JS, Park JW, Ruckenstein E. Thermal and dynamic mechanical analysis of PVAfMC blend hydrogels. Polymer 42: 4271-4280 (2001) https://doi.org/10.1016/S0032-3861(00)00768-0
  29. Yoo SM, Park JS, Chung HY, Shim JY, Kim BH, Park JW, Effect of grape seed extract on methylcellulose film characteristics. Food Engineering Progress 7: 242-247 (2003)
  30. SAS Institute, Inc. SAS User's Guide. Statistical Analysis Systems Institute, Cary, NC, USA (1990)
  31. Ross-Murphy SB. Structure and rheology of gelatin gels. Polymer 33: 2622-2627 (1992) https://doi.org/10.1016/0032-3861(92)91146-S
  32. Gilsenan PM, Ross-Murphy SB. Rheology characterization of gelatins from mammalian and marine sources. Food Hydrocolloids 14: 191-195 (2000) https://doi.org/10.1016/S0268-005X(99)00050-8
  33. Rhim JW, Ham KS, Park SY, Molecular weight of chitosan affect characteristics of chitosan films. J. Korea Soc. Packaging Sci. Tech. 6: 80-95 (2000)
  34. Cho SY, Park JW, Rhee C. Edible films from protein concentrates of rice wine meal. Korean J. Food Sci. Technol. 30: 1097-1106 (1998)
  35. Banker GS, Gore AY, Swarbrick J. Water vapor transmission properties of free polyver films. J. Pharm. Pharmac. 18: 457-466 (1966) https://doi.org/10.1111/j.2042-7158.1966.tb07906.x
  36. Park HJ, Park JW, Song JJ, Kang SK, Vergano PJ, Testin RF. Tensile strength, elongation and water vapor permeability of chitosan-based biopolymer film. J. Chitin Chitosan 2: 135-141 (1997)
  37. Fellows P. Food Processing Technology Principles and Practice. Ellis Horwood Ltd., Chichester, England, UK. pp. 432-433 (1988)
  38. Park JS, Park JW, Ruckenstein E. A dynamic mechanical and thermal analysis of unplasticized and plasticized poly(vinyl alcohol)/methylcellulose blends. J. Polymer Sci. 80: 1825-1834 (2001)