DOI QR코드

DOI QR Code

Physical Properties of Polypropylene Foam Blended with Thermally Expandable Microcapsules

열팽창캡슐 적용 발포폴리프로필렌의 물리적 특성 비교

  • Ha, Jin Uk (Lightweight & Convergent Materials R&D Center, Korea Automotive Technology Institute) ;
  • Jeoung, Sun Kyung (Lightweight & Convergent Materials R&D Center, Korea Automotive Technology Institute) ;
  • Lee, Pyoung-Chan (Lightweight & Convergent Materials R&D Center, Korea Automotive Technology Institute) ;
  • Hwang, Ye Jin (Lightweight & Convergent Materials R&D Center, Korea Automotive Technology Institute) ;
  • Nam, Byung Kook (The 3rd Research Team, Lotte Chemical) ;
  • Han, In-Soo (Polymeric Materials Research Team, Hyundai Motors) ;
  • Kwak, Sung Bok (Advanced Engineering Team, Duckyang Ind. Co., Ltd.) ;
  • Lee, Jae Yong (Advanced Engineering Team, Duckyang Ind. Co., Ltd.)
  • Received : 2014.05.20
  • Accepted : 2014.06.27
  • Published : 2015.01.25

Abstract

Thermally expandable microcapsules (TEMs) can be expanded upon heating since the activation energy of liquid hydrocarbon at the core of the TEMs increased at high temperature. Due to this property, TEMs are widely used in the industry as blowing agents or light-weight fillers. In this article, chemical blowing agent and TEM were used for making polypropylene (PP) foams, and their mechanical properties were compared. Physical properties (tensile strength, impact strength etc.) of PP foams decreased with increasing the amount of blowing agents while weight of specimen decreased. However, PP foam produced with TEMs showed higher impact strength than the one with a chemical blowing agent. In order to figure out the difference of impact strength, the morphology of PP foamed was investigated. Expanding properties of TEM can be controlled by changing core back distance.

열팽창 캡슐은 코어에 위치한 발포가스가 기화온도 이상이 될 경우 캡슐을 팽창시켜 상온상태보다 큰 부피를 지닌 형태를 이루게 되는데 이러한 특성을 이용하여 플라스틱의 발포소재로 적용이 가능하다. 본 연구에서는 자동차 내외장재 용도로 가장 많이 사용되는 폴리프로필렌(polypropylene, PP)을 베이스 원료로 하여 기존 화학발포제와 열팽창 캡슐을 이용하여 PP 폼을 제조하였으며, 제조된 시편의 물리적인 특성을 비교하였다. 화학 발포제와 열팽창 캡슐을 적용하여 제조된 PP 폼은 모두 첨가된 발포제 및 열팽창 캡슐 함량 증가에 따라 시편의 밀도가 감소하였고, 인장강도를 포함한 기계적 물성 또한 감소하였다. 하지만, 열팽창 캡슐을 이용해 제조된 PP 폼의 경우는 화학 발포제를 적용하여 만들어진 시편대비 충격강도 감소량이 크지 않았다. 발포제 종류별로 상이한 물리적 특성을 분석하기 위하여 PP 폼의 매트릭스를 분석하였으며, 다른 형상의 모폴로지를 관찰하였다.

Keywords

Acknowledgement

Supported by : 산업자원부

References

  1. J. Park, J. Lee, S. Kim, J. Kim, and K. Ahn, Transactions of KSAE, 1, 123 (2013).
  2. D. W. Kim, J. W. Yoon, S. Park, K. Kim, and T. Lee, Int. J. Autom. Techn., 14, 955 (2013). https://doi.org/10.1007/s12239-013-0105-0
  3. C. S. Park, High Performance Epoxy Resins in Composite Application, SAMPE Korea Symposium Il-San, S. Korea, Oct. (2013).
  4. K. H. Yoon, J. W. Lee, and Y. C. Kim, Polym(Korea), 37, 494 (2013).
  5. D. Y. Hwang, K. D. Han, D. Han, K. I. Lee, and K. Y. Lee, Polym(Korea), 24, 538 (2000).
  6. K. Hikita, JSAE Review, 23, 239, (2002). https://doi.org/10.1016/S0389-4304(02)00172-8
  7. D. S. Morehouse and R. J. Tetreault, U.S. Pat. 3,615,972 (1971).
  8. M. Jonsson, O. Nordin, A. L. Kron, and E. Malmstrom J. Appl. Polym. Sci., 118, 1219 (2010).
  9. M. Jonsson, O. Nordin, E. Malmstrom, and C. Hammer, Polym. 47, 3315 (2006). https://doi.org/10.1016/j.polymer.2006.03.013
  10. Y. Kawaguchi and T. Oishi, J. Appl. Polym. Sci., 93, 505 (2004). https://doi.org/10.1002/app.20460
  11. Y. Kawaguchi, Y. Itamura, K. Onimura, and T. Oishi, J. Appl. Polym. Sci., 96, 1306 (2005). https://doi.org/10.1002/app.21429
  12. M. Tomalino and G. Bianchini, Prog. Org. Coat., 32, 17 (1997). https://doi.org/10.1016/S0300-9440(97)00080-5
  13. M. Jonsson, O. Nordin, and E. Malmstrom, J. Appl. Polym. Sci., 121, 369 (2011). https://doi.org/10.1002/app.33585
  14. Y. Zhao, C. Wang, Y, Bai, G. Chen, M. Jing, and B. Zhu, J. Colloid Interf. Sci., 329 48 (2009). https://doi.org/10.1016/j.jcis.2008.09.055
  15. B. N. Kolarz, M. Wojaczynska, J. Bryjak, and B. Pawlow, React. Polym., 23, 123 (1994). https://doi.org/10.1016/0923-1137(94)90011-6
  16. M. Jonsson, O. Nordin, A. L. Kron, and E. Malmstrom, J. Appl. Polym. Sci., 117, 384 (2010).
  17. S. Doroudiani, C. B. Park, and M. T. Kortschot, Polym. Eng. Sci., 38, 1205 (1998). https://doi.org/10.1002/pen.10289
  18. E. H. Tejeda, C. Z. Sahagun, R. Gonzalez-Nunez, and D. Rodrigue, J. Cell. Plast., 41, 417 (2005). https://doi.org/10.1177/0021955X05056959
  19. D. Klempner and K. C. Frisch. Handbook of Polymeric Foam and Foam Technology, Hanser, New York, 1991.
  20. L. J. Gibson and M. Ashby, Cellular Solids: Structure and Properties, 2nd Edition, Cambridge University Press, Cambridge, 1997.
  21. V. Kumar and N. P. Suh, Polym. Eng. Sci., 30, 1323 (1990). https://doi.org/10.1002/pen.760302010

Cited by

  1. 호모 폴리프로필렌을 이용한 고강도 폴리프로필렌 폼의 제조를 위한 공정 최적화 연구 vol.42, pp.3, 2015, https://doi.org/10.7317/pk.2018.42.3.364
  2. Performance of bio-ethylene propylene diene monomer (bio-EPDM) foam with mixed chemical and encapsulated blowing agents vol.6, pp.None, 2019, https://doi.org/10.1186/s40691-019-0178-0
  3. Blowing Properties and Functionality of Thermoplastic Polyester Film Using Thermally Expandable Microcapsules vol.11, pp.10, 2015, https://doi.org/10.3390/polym11101652
  4. Effects of Light-weight Dash Insulation Pad with TPE Sheet Filled with TEMs vol.29, pp.5, 2015, https://doi.org/10.7467/ksae.2021.29.5.459
  5. Finite element model for the steel-polymer composite floor filled with phase-change amorphous polymers at elevated temperatures vol.319, pp.None, 2015, https://doi.org/10.1016/j.conbuildmat.2021.126059