• Title/Summary/Keyword: High temperature gas separation

Search Result 82, Processing Time 0.024 seconds

Recent Research Trends on Separation of CO2 Emitted From Steelmaking Process using Gas Hydrate Technology (가스 하이드레이트 형성 원리를 이용한 철강공정 배기가스 중 CO2 분리기술에 대한 최근 연구 동향)

  • Lee, Bo Ram;Ryu, Jun-Hyung;Han, Kunwoo;Park, Da-Hye;Lee, Kun-Hong;Lee, In-Beum
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.232-243
    • /
    • 2010
  • Gas hydrates are crystalline solids composed of water and gas molecules. Water molecules are linked through hydrogen bonding and create cavities(host lattice) that can capture a large variety of guest molecules under appropriate conditions, generally high pressure and low temperature. Recently, many researchers try to apply gas hydrates to industrial processes to capture greenhouse gases due to the facts that the process is eco-friendly and target gas molecules can be preferentially captured. In this paper, we introduced recent studies on $CO_2$ and $CO_2-N_2$ mixture hydrates to evaluate the feasibility of industrial application of gas hydrate technology to $CO_2$ capture process. Specifically, we put emphasis on the technical feasibility of $CO_2$ separation in steel industry using gas hydrate formation principles.

How to Eliminate CO, CO2 and CH4 in H2 & Inert Gas -Possibility of Fuel Cell Application- (수소와 불활성 가스 중 일산화탄소, 이산화탄소, 메탄 제거에 관한 연구 -연료전지에의 적용 가능성-)

  • Lee, Taek-Hong;Cheon, Young-Ki
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.3
    • /
    • pp.220-227
    • /
    • 2004
  • The purpose of this paper is, based on the theoretical background of the principle of gas purification and absorption, and the absorbing ability of metals, to syudy the efficiency of gas purification of inorganic gases using Zr alloys, so as to contribute to the IT industry. To produce and distribute gas with high purity and ultra-high purity, different types of gas purifier are currently being used: distillation type, getter type, catalyst type, absorption at low-temperature type, and membrane separation equipment. From the different purification methods mentioned above, the getter type gas purifier is capable of not only high performance and capacity but also P.O.U(Point Of Use) method. The key of the getter type gas purifier is its efficiency of gas purification, which is the subject chosen for this study.

Hydrogen Production Using Membrane Reactors

  • Giuseppe Barbieri;Paola Bernardo;Enrico Drioli;Lee, Dong-Wook;Sea, Bong-Kuk;Lee, Kew-Ho
    • Korean Membrane Journal
    • /
    • v.5 no.1
    • /
    • pp.68-74
    • /
    • 2003
  • Methane steam reforming (MSR) reaction for hydrogen production was studied in a membrane reactor (MR) using two tubular membranes, one Pd-based and one of porous alumina. A higher methane conversion than the thermodynamic equilibrium for a traditional reactor (TR) was achieved using MRs. The experimental temperature range was 350-500$^{\circ}C$; no sweep-gas was employed during reaction tests to avoid its back-permeation through the membrane and the steam/methane molar feed ratio (m) varied in the range 3.5-5.9. The best results (the difference between the MR conversion and the thermodynamic equilibrium was of about 7%) were achieved with the alumina membrane, working with the highest steam/methane ratio and at 450$^{\circ}C$. Silica membranes prepared at KRICT laboratories were characterized with permeation tests on single gases (N$_2$, H$_2$ and CH$_4$). These membranes are suited for H$_2$ separation at high temperature.

Preparation of Asymmetric Folyethersulfone Hollow Fiber Membranes for Flue Gas Separation (온실기체 분리용 폴리이서설폰 비대칭 중공사 막의 제조)

  • Kim Jeong-Hoon;Sohn Woo-Ik;Choi Seung-Hak;Lee Soo-Bok
    • Membrane Journal
    • /
    • v.15 no.2
    • /
    • pp.147-156
    • /
    • 2005
  • It is well-known that polyethersulfone (PES) has high $CO_2$ selectivity over $N_2\;(or\;CH_4)$ and excellent pressure resistance of $CO_2$ plasticization among muy commercialized engineering plastics[1-4]. Asymmetric PES hollow fiber membranes for flue gas separation were developed by dry-wet spinning technique. The dope solution consists of PES, NMP and acetone. Water and water/NMP mixtures are used in outer and inner coagulants, respectively. Gas permeation rate (i.e., permeance) and $CO_2/N_2$ selectivity were measured with pure gas, respectively and the micro-structure of hollow fiber membranes was characterized by scanning electron microscopy. The effects of polymer concentration, ratio of NMP to acetone, length of air gap, evaporation condition and silicone coating were investigated on the $CO_2/N_2$ separation properties of the hollow fibers. Optimized PES hollow fiber membranes exhibited high permeance of $25\~50$ GPU and $CO_2/N_2$ selectivity of $30\~40$ at room temperature and have the apparent skin layer thickness of about $0.1\;{\mu}m$. The developed PES hollow fiber membranes, would be a good candidate suitable for the flue gas separation process.

Morphological study of $SF_6$ clathrate hydrate crystal ($SF_6$ 하이드레이트 결정 성장의 특성)

  • Lee, Yoon-Seok;Lee, Hyun-Ju;Lee, Eun-Kyung;Kim, Soo-Min;Lee, Ju-Dong;Kim, Yang-Do
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.711-711
    • /
    • 2009
  • Global warming has been widely recognized as a serious problem threatening the future of human beings. It is caused by the buildup in the atmosphere of greenhouse gases, such as carbon dioxide, methane, hydrofluorocarbons (HFCs), and sulfur hexafluoride (SF6). Particularly, SF6 has extremely high global warming potential compare to those of other global warming gases. One option for mitigating this greenhouse gas is the development of an effective process for capturing and separating these gases from anthropogenic sources. In general, gas hydrates can be formed under high pressure and low temperature. However, SF6 gas is known to form hydrate under relatively milder conditions. Therefore, technological and economical effects could be expected for the separation of SF6 gas from waste gas mixtures. In this study, we carried out morphological study for the SF6 hydrate crystals to understand its formation and growth mechanisms. The observations were made in high-pressure optical cell charged with liquid water and SF6 gas at constant pressure and temperature. Initially SF6 hydrate formed at the surface between gas and liquid regions, and then subsequent dendrite crystals grew at the wall above the gas/water interface. The visual observations of crystal nucleation, migration, growth and interference were reported. The detailed growth characteristics of SF6 hydrate crystals were discussed in this study.

  • PDF

Performance Analysis of IGCC Gas Turbine Considering Turbine Operation Condition Change due to Modulation of Nitrogen Dilution (질소희석량 조절에 따른 터빈 운전조건 변화를 고려한 IGCC 용 가스터빈의 성능분석)

  • Kim, Chang Min;Kang, Do Won;Kim, Tong Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.11
    • /
    • pp.1023-1029
    • /
    • 2013
  • The integration between a gas turbine and an air separation unit (ASU) is important in IGCC plants. The portion of ASU air extracted from the gas turbine and the degree of nitrogen supply from the ASU to the gas turbine side are important operating parameters. Their effect on the gas turbine performance and operability should be considered in a wide ambient temperature range. In this study, appropriate nitrogen dilution rate and turbine inlet temperature that satisfy the two limitations of turbine blade temperature and maximum allowable power output were predicted. The air integration was set at zero. The simulation showed that the power output increases and turbine blade temperature decreases as the nitrogen dilution increases. The maximum allowable power output can be obtained under medium and low ambient temperature ranges. Under a high ambient temperature range, the achievable power is less than the maximum power.

Foam Separation of Bovine Serum Protein Fractions (소 혈청 단백질 분획들의 기포분리 현상에 관한 연구)

  • Lee, Boo-Yong;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.225-230
    • /
    • 1987
  • The foam separation of bovine serum proteins was investigated and the protein fractionation by foam separation was analyzed by PAG electrophoresis. The protein concentration for the surface excess formation of bovine serum was in the range of $20-800\;{\mu}g/ml$. At pH 5, the foamate volume was maximum, but the enrichment ratio minimum. As the temperature was elevated, the foamate volume decreased and the enrichment ratio increase. As the gas flow rate increased from 25 to 100 ml/min, the foamate volume decreased and the enrichment ratio increased. The enrichment ration became maximum when the added ionic strength of serum solution was in the range of 1-3 by the addition of different types of salts, and this was related to the reduction of surface tension of the solution. In general, BSA, ${\alpha}_1$, and ${\alpha}_2-globulins$, which have relatively small molecular weight and high hydrophobicity, moved easily to the foam, and the separation of protein fractions in the serum varied with the changes in pH, temperature, gas flow rate and ionic strength of the solution.

  • PDF

Application of Membrane Technology in Thermochemical Hydrogen Production IS (iodine-sulfur) Process Using the Nuclear Heat (원자력 고온 핵 열을 이용한 열화학적 수소제조 IS(요오드-황) 프로세스에서의 분리막 기술의 이용)

  • Hwang Gab-Jin;Park Chu-Sik;Lee Sang-Ho;Kim Tae-Hwan;Choi Ho-Sang
    • Membrane Journal
    • /
    • v.14 no.3
    • /
    • pp.185-191
    • /
    • 2004
  • It summarized about the properties of thermochemical water-splitting iodine-sulfur process that was hydrogen production using the waste heat from the High Temperature Gas-Cooled Reactor (HTGR) recycling the heat of nuclear power. It was mainly explained about the application of membrane separation technique in IS process. Thermochemical water-splitting hydrogen production method using the high temperature nuclear thermal energy could be realized and remained to be solved the investigation subject. And, it is possible for mass-production of hydrogen such as one of the clean energy in future.

Microporous Ceramic Membrane and Its Gas Separation Performance

  • Li, Lin;Li, Junhui;Qi, Xiwang
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.04a
    • /
    • pp.16-19
    • /
    • 1996
  • Separation with synthetic membrane have become increasingly important processes in many fields. In the most application of membrane process, polymer membrane is used. the main advantage of polymers as a material for membrane preparation is the relative simplicity of this film formation which enables one to obtain rather high permeability rates. However, polymeric membranes have several limitations, such as high temperature instability, swelling and decomposition in organic solvent, et. al.. These limitations can be overcome by inorganic membrane. At the present time, commercially available inorganic membranes have pore diameters ranging 5nm to 50mm, and the predominant flow regime in such membrane is Knudsen diffusion. Since the Knudsen permeability is directly proportional to the molecular velocity, gases can be separated due to their molecular masses. However, this separation mechanism is only of important for light gases such as H2 and He. Other separation mechanisms like surface diffusion, active diffusion can play an important role only with very small pore diameters(2nm) and give rise to large permselectivities. Therefore, preparation of inorganic membrane with nano-sized pore have been attracting more and more attention.

  • PDF

High Temperature Corrosion in Carbon-Rich Gases

  • Young, D.J.
    • Corrosion Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.69-76
    • /
    • 2008
  • Common methods for large scale hydrogen production, such as steam reforming and coal gasification, also involve production of carbonaceous gases. It is therefore necessary to handle process gas streams involving various mixtures of hydrocarbons, $H_2$, $H_2O$, CO and $CO_2$ at moderate to high temperatures. These gases pose a variety of corrosion threats to the alloys used in plant construction. Carbon is a particularly aggressive corrodent, leading to carburisation and, at high carbon activities, to metal dusting. The behaviour of commercial heat resisting alloys 602CA and 800, together with that of 304 stainless steel, was studied during thermal cycling in $CO/CO_2$ at $650-750^{\circ}C$, and also in $CO/H_2/H_2O$ at $680^{\circ}C$. Thermal cycling caused repeated scale separation, which accelerated chromium depletion from the alloy subsurface regions. The $CO/H_2/H_2O$ gas, with $a_C=2.9$ and $p(O_2)=5\times10^{-23}$ atm, caused relatively rapid metal dusting, accompanied by some internal carburisation. In contrast, the $CO/CO_2$ gas, with $a_C=7$ and $p(O_2)=10^{-23}-10^{-24}$ atm caused internal precipitation in all three alloys, but no dusting. Inward diffusion of oxygen led to in situ oxidation of internal carbides. The very different reaction morphologies produced by the two gas mixtures are discussed in terms of competing gas-alloy reaction steps.