DOI QR코드

DOI QR Code

Performance Analysis of IGCC Gas Turbine Considering Turbine Operation Condition Change due to Modulation of Nitrogen Dilution

질소희석량 조절에 따른 터빈 운전조건 변화를 고려한 IGCC 용 가스터빈의 성능분석

  • Received : 2013.05.30
  • Accepted : 2013.08.09
  • Published : 2013.11.01

Abstract

The integration between a gas turbine and an air separation unit (ASU) is important in IGCC plants. The portion of ASU air extracted from the gas turbine and the degree of nitrogen supply from the ASU to the gas turbine side are important operating parameters. Their effect on the gas turbine performance and operability should be considered in a wide ambient temperature range. In this study, appropriate nitrogen dilution rate and turbine inlet temperature that satisfy the two limitations of turbine blade temperature and maximum allowable power output were predicted. The air integration was set at zero. The simulation showed that the power output increases and turbine blade temperature decreases as the nitrogen dilution increases. The maximum allowable power output can be obtained under medium and low ambient temperature ranges. Under a high ambient temperature range, the achievable power is less than the maximum power.

IGCC 가스터빈과 공기분리기와의 결합이 중요한데 공기분리기로 공급되는 공기를 가스터빈에서 추출하는 정도와 공기분리기에 남는 질소를 연소기로 공급하는 정도가 중요한 운전 파라미터이다. 이러한 파라미터들이 가스터빈의 성능과 운전성에 미치는 영향은 설계조건인 ISO 조건뿐만 아니라 다양한 외기조건에 대해서도 고려되어야 한다. 본 연구에서는 여러 외기조건에서 터빈 블레이드 온도와 생산 가능한 출력의 한계를 만족하도록 하는 질소희석량과 터빈입구온도를 예측하였다. 공기 결합도는 0 으로 두었다. 해석결과 질소공급량이 많을수록 출력은 높아지고 블레이드 온도는 낮아졌다. 상온 근처의 특정 온도 이하의 외기 조건에서는 가스터빈이 낼 수 있는 최대 출력을 얻을 수 있으나 그 이상에서는 최대 출력을 생산하지 못함을 확인하였다.

Keywords

References

  1. Prashant, S. P., 2011, "Comparison Between Oxygen-Blown and Air-Blown IGCC Power Plants: A Gas Turbine Perspective," ASME paper GT2011-45154.
  2. Lee, J. J., Kim, Y. S., Cha, K. S., Kim, T. S., Sohn, J. L. and Joo, Y. J., 2009, "Influence of System Integration Options on the Performance of an Integrated Gasification Combined Cycle Power Plant," Applied Energy, Vol. 86 No. 9, pp. 1788-1796. https://doi.org/10.1016/j.apenergy.2008.12.030
  3. Richard, A. D., Walter W. S. and Patrick L., 2007, "Development of Baseline Performance Values for Turbines in Existing IGCC Applications," ASME paper GT2007-28096.
  4. Kim, Y. S., Lee, J. J., Kim, T. S., Sohn, J. L., and Joo, Y. J., 2010, "Performance Analysis of a Syngas-Fed Gas Turbine Considering the Operating Limitations of Its Components," Applied Energy, Vol. 87 No. 5, pp1602-1611. https://doi.org/10.1016/j.apenergy.2009.09.021
  5. Emmanuel, O. O. and Jeff, P., 2007, "Fundamental Impact of Firing Syngas in Gas Turbines," ASME paper GT2007-27385.
  6. Kim, Y. S., Park, S. G., Lee, J. J., Kang, D. W. and Kim, T. S., 2013, "Analysis of the Impact of Gas Turbine Modifications in Integrated Gasification Combined Cycle Power Plants," Applied Energy, In press.
  7. Nikolett, S., Mohmmad, M., Peter, B. and Mohen, A., 2011, "Development of H2-Rich Syngas Fuelled GT for Future IGCC Power Plants Establishment of a Baseline," ASME paper GT2011-45701.
  8. Thomas K., Emanuele M., Michiel C., Stefano C. and Daniel J., 2010, "Shell Gasifier-Based Coal IGCC with CO2 Capture and Storage Partial Water Quench vs. Novel Water-Gas Shift," ASME paper GT2010-22859.
  9. Black J., 2010, "Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity. National Energy Technology Laboratory," NETL Report, DOE/NETL-2010/1397., pp 232-234, 245-247.
  10. GE-Energy. GateCycle ver. 6.0, 2006.
  11. Famer, R., 2009, "Gas Turbine World, Handbook," Pequot Publishing, Inc., Vol. 27, p.75.
  12. Kim T. S. and Ro S. T., 1995, "Comparative Evaluation of the Effect of Turbine Configuration on the Performance of Heavy-Duty Gas Turbines," ASME paper 95-GT-3341995.
  13. Boyce, M. P., 2002, "Gas Turbine Engineering Handbook. 2nd ed.," Gulf Professional Publishing.

Cited by

  1. Process Modeling System of a Combined Cycle Plant for Steady State Simulation with Model Based Approach vol.53, pp.5, 2015, https://doi.org/10.9713/kcer.2015.53.5.545