• Title/Summary/Keyword: High temperature fuel cell

Search Result 432, Processing Time 0.028 seconds

Numerical Study on Heat Transfer of Air-cooling PEMFC in HALE UAV (고고도 무인기 내부의 공랭식 PEMFC 열전달 전산 해석 연구)

  • SONG, MYEONGHO;KIM, KYOUNGYOUN
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.2
    • /
    • pp.150-155
    • /
    • 2017
  • Proper cooling of PEM fuel cell stack is essential for the high-performance operation of fuel cell system. Insufficient cooling of the stack can cause significant damage to components due to overheating and also can decrease cell performance by dehydration of the polymer electrolyte. In the present study, we performed a computational analysis to assess the condition of the cooling system to secure the proper temperature in fuel cell stack system for high altitude long endurance (HALE) unmanned aerial vehicle (UAV).

Development Status of the Molten Carbonate Fuel Cell Technology (용융탄산염 연료전지의 기술개발 현황 및 분석)

  • Hong, Seong-Ahn;Nam, Suk Woo
    • Applied Chemistry for Engineering
    • /
    • v.3 no.4
    • /
    • pp.535-546
    • /
    • 1992
  • The molten carbonate fuel cell(MCFC) has been under Intensive development for the last decade as a second generation fuel cell. The advantages of the MCFC over the phophoric acid fuel cell are higher efficiency, its ability to accept CO and $H_2$ as a fuel, lower material costs, and high operating temperature making internal reforming possible. These features, along with low atmospheric emissions, will open up a significant market as an attractive means of developing highly efficient power plant. This article reviews a status of the MCFC research and development, a principle of the MCFC, and cell and stack technology including the status of electrodes, matrices and electrolytes. Several technical difficulties which must be resolved to be commercialized art mainly focused.

  • PDF

Simulation Experiment of PEMFC Using Insulation Vessel at Low Temperature Region (저온영역에서 단열용기를 이용한 연료전지 모의 실험)

  • Jo, In-Su;Kwon, Oh-Jung;Kim, Yu;Hyun, Deok-Su;Park, Chang-Kwon;Oh, Byeong-Soo
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.5
    • /
    • pp.403-409
    • /
    • 2008
  • Polymer electrolyte membrane fuel cell (PEMFC) is very interesting power source due to high power density, simple construction and operation at low temperature. But it has problems such as high cost, improvement of performance, effect of temperature and initial start at low temperature. These problems can be approached to be solved by using experiment and mathematical method which are general principles for analysis and optimization of control system for heat and hydrogen detecting management. In this paper, insulation vessel and control system for stable operation of fuel cell at low temperature were developed for experiment. The constant temperature capability and the heating time at sub-zero temperatures with insulation control system were studied by using a heating bar of 60W class. PEMFC stack which was made by 4 cells with $50\;mc^2$ active area in each cell is a thermal source. Times which take to reach constant temperature by the state of insulation vacuum were measured at variable environment temperatures. The test was performed at two conditions: heating mode and cooling mode. Constant temperature capability was better at lower environment temperature and vacuum pressure. The results of this experiment could be used as basis data about stable operation of fuel cell stack in low temperature zone.

Minimization of Carbon Monoxide in the High Efficient Catalytic Shift for Fuel Cell Applications (연료전지용 고효율 촉매전이 반응의 일산화탄소 저감)

  • Park, Heon;Kim, Seong-Cheon;Chun, Young-Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.5
    • /
    • pp.528-532
    • /
    • 2007
  • The generation of high-purity hydrogen from hydrocarbon fuels is essential for efficient operation of fuel cell. In general, most feasible strategies to generate hydrogen from hydrocarbon fuels consist of a reforming step to generate a mixture of $H_2$, CO, $CO_2$ and $H_2O$(steam) followed by water gas shift(WGS) and CO clean-up steps. The WGS reaction that shifts CO to $CO_2$ and simultaneously produces another mole of $H_2$ was carried out in a two-stage catalytic conversion process involving a high temperature shift(HTS) and a low temperature shift(LTS). In the WGS operation, gas emerges from the reformer is taken through a high temperature shift catalyst to reduce the CO concentration to about $3\sim4%$ followed to about 0.5% via a low temperature shift catalyst. The WGS reactor was designed and tested in this study to produce hydrogen-rich gas with CO to less than 0.5%.

Comparison of fabrication cost of composite bipolar plates for PEM fuel cell: compression molding and machining (PEM 연료전지용 복합재 분리판의 제작비용 비교: 압축성형과 기계식 가공)

  • Lee, Hee-Sub;Chu, Won-Shik;Kang, Yun-Cheol;Kang, Hyuk-Jin;Ahn, Sung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.105-108
    • /
    • 2006
  • The fuel cell is one of the promising environment-friendly energy sources for the next generation. The fuel cell provides good energy efficiency above 40% without pollution or noise. Different fuel cell types are usually distinguished by the kind of electrolyte. Among these, the proton exchange membrane fuel cell (PEMFC) has advantages of high power density. low operating temperature, relatively quick start-up, and rapid response to varying loads. The bipolar plate is a major component of the PEM fuel cell stack, and it takes a large portion of stack volume, weight and cost. In this study, as alternative materials for bipolar plate of PEM fuel cells, graphite composites were fabricated by compression molding and by machining. Graphite particles mixed with epoxy resin were used as the main substance to provide electric conductivity. Flow channels were fabricated by compression molding with design of experiments (DOE) to evaluate moldability. The cost for compression molding of graphite-composite bipolar plate was compared with machining cost to make the same bipolar plate.

  • PDF

Synthesis and Characterization of Phosphoric Acid-doped Poly (2,5-benzimidazole) Membrane for High Temperature Polymer Electrolyte Membrane Fuel Cells (고온 고분자 연료전지용 인산 도핑 폴리(2,5-벤지이미다졸) 막의 제조 및 특성)

  • Nguyen, Thi Xuan Hien;Mishra, Ananta Kumar;Choi, Ji-Sun;Kim, Nam-Hoon;Lee, Joong-Hee
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.1
    • /
    • pp.26-33
    • /
    • 2012
  • Phosphoric acid-doped poly (2,5-benzimidazole) (DABPBI) was prepared by condensation polymerization of 3,4-diaminobenzoic acid for high temperature proton electrolyte membrane fuel cells. The membranes were casted directly using a hot-press unit and characterized by fourier transform infrared spectroscopy, thermogravimetric analysis, conductivity measurement, scanning electron microscopy and tensile test. The proton conductivities of DABPBI are observed to be 0.062 and 0.018 $S{\cdot}cm^{-1}$ under 30 and 1% relative humidity, respectively at a temperature of $120^{\circ}C$ which is appreciably higher than that of Nafion 115 under similar conditions. The DABPBI membrane has demonstrated excellent thermo- mechanical properties and proton conductivity suggesting its suitability as a high temperature membrane.

Development of HIL simulator for performance validation of stack inlet gases temperature controller of marine solid oxide fuel cell system (선박용 고체산화물형 연료전지 시스템의 스택 공급 가스 온도 제어기 성능 검증을 위한 HIL 시뮬레이터 개발)

  • Ahn, Jong-Woo;Park, Sang-Kyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.582-588
    • /
    • 2013
  • Solid Oxide Fuel Cell (SOFC) has been focused as a promising power source, which can replace a diesel engine regarding as major source of air pollution by the ship, due to high efficiency and eco-friendly. High operating temperature of SOFC is enable to secure of high efficiency, use various fuels and no need of high priced catalyst, but it may damage to components of SOFC. Therefore temperature control system has to be designed and validated before employing the fuel cell system for securing high efficiency and reliability. In this paper, instead of using typical method to validate performance of the controller, which consumes high cost and time, performance validation system using Hardware-in-the-loop simulation was developed and validated performence of the designed temperature controller for SOFC system.

Synthesis and Characterization of a Ceria Based Composite Electrolyte for Solid Oxide Fuel Cells by an Ultrasonic Spray Pyrolysis Process (초음파분무 열분해법을 이용한 고체산화물 연료전지용 세리아계 복합체 전해질의 제조 및 특성)

  • Lee, Young-In;Choa, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.21 no.3
    • /
    • pp.222-228
    • /
    • 2014
  • Much research into fuel cells operating at a temperature below $800^{\circ}C$. is being performed. There are significant efforts to replace the yttria-stabilized zirconia electrolyte with a doped ceria electrolyte that has high ionic conductivity even at a lower temperature. Even if the doped ceria electrolyte has high ionic conductivity, it also shows high electronic conductivity in a reducing environment, therefore, when used as a solid electrolyte of a fuel cell, the powergeneration efficiency and mechanical properties of the fuel cell may be degraded. In this study, gadolinium-doped ceria nanopowder with $Al_2O_3$ and $Mn_2O_3$ as a reinforcing and electron trapping agents were synthesized by ultrasonic pyrolysis process. After firing, their microstructure and mechanical and electrical properties were investigated and compared with those of pure gadolinium-doped ceria specimen.

Operation of A Small MCFC Stack Using New Designed Circular Separator (새로운 원반형 구조의 분리판을 사용한 소형 용융탄산염 스택의 운전)

  • Han, Jonghee;Roh, Gil-Tae;Yoon, Sung Pill;Nam, Suk Woo;LIm, Tae Hoon;Hong, Seong Ahn
    • Journal of Hydrogen and New Energy
    • /
    • v.14 no.3
    • /
    • pp.229-235
    • /
    • 2003
  • A 50W class MCFC stack was operated in order to test a new design of the circular shaped separator. in the new design, the anode gas was supplied into the stack and was exhausted out of the stack after the anode reaction. The exhausted gas was reacted with the cathode gas supplied with excess oxygen in the vessel in which the stack was placed. Then the reacted gas flowed into the cathode side of the stack and was exhausted through the outlet located in the center of the stack. The average voltage of the single cells in the stack was 0.835V under the current density of $150mA/cm^2$, initially, and the degradation rate of the stack voltage was 1.7%/1,000h. High stack voltage with good stability of the present stack was due to the small temperature gradient in the stack. The small temperature gradient as well as the easiness of temperature control was the result of the new configuration of the separator which utilized the heat of the combustion reaction between anode outlet gas and the cathode inlet gas for heating the stack.