DOI QR코드

DOI QR Code

Synthesis and Characterization of a Ceria Based Composite Electrolyte for Solid Oxide Fuel Cells by an Ultrasonic Spray Pyrolysis Process

초음파분무 열분해법을 이용한 고체산화물 연료전지용 세리아계 복합체 전해질의 제조 및 특성

  • Lee, Young-In (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Choa, Yong-Ho (Department of Fusion Chemical Engineering, Hanyang University)
  • 이영인 (서울과학기술대학교 신소재공학과) ;
  • 좌용호 (한양대학교 융합화학공학과)
  • Received : 2014.06.09
  • Accepted : 2014.06.20
  • Published : 2014.06.28

Abstract

Much research into fuel cells operating at a temperature below $800^{\circ}C$. is being performed. There are significant efforts to replace the yttria-stabilized zirconia electrolyte with a doped ceria electrolyte that has high ionic conductivity even at a lower temperature. Even if the doped ceria electrolyte has high ionic conductivity, it also shows high electronic conductivity in a reducing environment, therefore, when used as a solid electrolyte of a fuel cell, the powergeneration efficiency and mechanical properties of the fuel cell may be degraded. In this study, gadolinium-doped ceria nanopowder with $Al_2O_3$ and $Mn_2O_3$ as a reinforcing and electron trapping agents were synthesized by ultrasonic pyrolysis process. After firing, their microstructure and mechanical and electrical properties were investigated and compared with those of pure gadolinium-doped ceria specimen.

Keywords

References

  1. R. M. Ormerod: Chem. Soc. Rev., 32 (2003) 17. https://doi.org/10.1039/b105764m
  2. Z. Shao, S. M. Haile, J. Ahn, P. D. Ronney, Z. Zhan and S. A. Barnett: Nature, 435 (2005) 795. https://doi.org/10.1038/nature03673
  3. V. V. Khartona, F. M. B. Marquesa and A. Atkinson: Solid State Ionics, 174 (2004) 135. https://doi.org/10.1016/j.ssi.2004.06.015
  4. M. Han, X. Tang, H. Yin and S. Peng: J. Power Sources, 165 (2007) 757. https://doi.org/10.1016/j.jpowsour.2006.11.054
  5. E. Courtina, P. Boya, T. Piquerob, J. Vullietb, N. Poirotc and C. Laberty-Robertd: J. Power Sources, 206 (2012) 77. https://doi.org/10.1016/j.jpowsour.2012.01.109
  6. B. C. H. Steele: Solid State Ionics, 129 (2000) 95. https://doi.org/10.1016/S0167-2738(99)00319-7
  7. R. Chockalingam, S. Chockalingam and V.R.W. Amarakoon: J. Power Sources, 196 (2011) 1808. https://doi.org/10.1016/j.jpowsour.2010.09.074
  8. A. I. Y. Tok, L. H. Luo and F. Y. C. Boey: Mater. Sci. Eng. A, 383 (2004) 229. https://doi.org/10.1016/j.msea.2004.05.071
  9. D. H. Prasad, J.-W. Son, B.-K. Kim, H.-W. Lee and J.-H. Lee: J. Eur. Ceram. Soc, 28 (2008) 3107. https://doi.org/10.1016/j.jeurceramsoc.2008.05.021
  10. T. Matsuia, T. Kosakab, M. Inabab, A. Mineshigec and Z. Ogumi: Solid State Ionics, 176 (2005) 663. https://doi.org/10.1016/j.ssi.2004.10.010
  11. T. S. Zhang, J. Ma, H. Cheng and S. H. Chan: Mater. Res. Bull., 41 (2006) 563. https://doi.org/10.1016/j.materresbull.2005.09.008
  12. Zhang Tianshu, Peter Hing, Haitao Huang and J. Kilner: Solid State Ionics, 148 (2002) 567. https://doi.org/10.1016/S0167-2738(02)00121-2