• Title/Summary/Keyword: High step up converter

Search Result 189, Processing Time 0.034 seconds

Analysis of Buck-Boost Converter for LED Drive (LED 구동을 위한 승강압 DC/DC 컨버터에 관한 연구)

  • Joe, Wi-Keun;Kim, Yong;Lee, Dong-Hyun;Cho, Kyu-Man;Lee, Eun-Young
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.967_968
    • /
    • 2009
  • For lighting application, high-power LED nowadays is driven at 350mA and a sensing resistor is used to provide feedback for LED-current regulation. This method adds an IR drop at the output branch, and limits power efficiency as LED current is large and keeps increasing. In this paper, a power efficient LED-current sensing circuit is proposed. The circuit does not use any sensing resistor but extracts LED-current information from the output capacitor of the driver. Controlling the brightness of LEDs requires a driver that provides a constant, regulated current. In one case, the converter may need to step down the input voltage, and, in another, it may need to boost up the output voltage. These situations often arise in applications with wide-ranging ""dirty"" input power sources, such as automotive systems. And, the driver topology must be able to generate a large enough output voltage to forward bias the LEDs. So, to provide this requirements, 13W prototype Buck-Boost Converter is used.

  • PDF

A New Active Lossless Snubber for Half-Bridge Dual Converter (하프 브릿지 듀얼 컨버터를 위한 새로운 능동형 무손실 스너버)

  • 한상규;윤현기;문건우;윤명중;김윤호
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.5
    • /
    • pp.419-426
    • /
    • 2002
  • A new active lossless snubber for half-bridge dual converter(that is called'dual converter') is proposed in this paper It features soft switching(ZVS) as well as turn-off snubbing in both main and auxiliary switches. Therefore, it helps the dual converter to operate at the higher frequency with a higher efficiency and smaller-sized reactive components. Moreover, since it uses parasitic components, such as leakage inductances and switch output capacitances etc, to achieve the ZVS of power switches, it has simpler structure and lower cost of production. The operational principle, theoretical analysis, and design consideration are presented. To confirm the operation, features, and validity of the proposed circuit, experimental results from a 200w, 24V/DC-200V/DC proto-type are presented.

Research about most suitable control of small scale system link type photovoltaic system (소규모 계통연계형 태양광 시스템의 최적제어에 대한 연구)

  • Hwang L. H.;Jang E. S.;Nam W. Y.
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.238-243
    • /
    • 2003
  • The solar cells should be operated at the maximum power point because its output characteristics are greatly fluctuated on the variation of insolation, temperature and load. The output power of solar cell is DC, therefore it is necessary to install an inverter among electric power converts. The inverter have to supply a sinusoidal current and voltage to the load and the interactive utility line. In the paper, the proposes a photovoltaic system designed with a step up chopper and single phase PWM voltage source inverter. Synchronous signal and control signal was processed by microprocessor for stable modulation. The step up chopper operates in continuous mode by adjusting the duty ratio so that the photovoltaic system tracks the maximum power point of solar cell without any influence on the variation of insolation and temperature because solar cell has typical dropping character. The single phase PWM voltage source inverter consists of complex type of electric power converter to compensate for the defect, that is, solar cell cannot be developed continuously by connecting with the source of electric power, from 10 to $20\%$. The single phase PWM voltage source inverter operates in situation that its output voltage is in same phase with the utility voltage. The inverter supplies an ac power with high factor and low level of harmonics to the load and the utility power system.

  • PDF

Topology and Performance analysis for High step-up·High efficiency DC-DC converter of PV MIC (PV MIC의 고승압·고효율을 위한 DC-DC 컨버터 토폴로지 및 성능분석)

  • Min, Byoung-guk;Song, Sung-geun;Oh, Seung-Yeol;Kim, Dae kyung
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.72-73
    • /
    • 2011
  • 본 논문에서는 공진형 액티브 클램핑 플라이백 회로를 구성하여 전력스위칭의 전압 클램핑을 통하여 스위칭 손실을 저감하고자 하였다. 또한, 입력측 대용량 인덕터를 대신하여 공진형 액티브 클램핑 플라이백 회로에 두 개의 변압기를 사용하여 효율개선 및 고승압을 구현하고자 하였으며, 하드웨어 Prototype을 제작하여 타당성을 검증하였다.

  • PDF

High Step-up Bidirectional Converter for use of Low Propulsion Battery Voltage and High DC link Voltage in Eco-friendly Vehicles (친환경 자동차에서 낮은 구동 배터리 전압과 높은 DC 링크 전압을 위한 고승압 양방향 컨버터)

  • Park, Yo-Han;Choi, Se-Wan
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.345-346
    • /
    • 2010
  • 본 논문에서는 친환경자동차의 구동배터리 충 방전을 위한 새로운 고승압 양방향 DC-DC 컨버터를 제안한다. 제안한 컨버터는 작은 듀티로 높은 승압이 가능하고 수동소자의 에너지량이 작아진다. 또한 전압 정격이 출력전압의 약 1/2이 되어 MOSFET의 사용이 가능하게 되어 스위칭주파수를 높일 수 있어 부피저감이 가능하다. 제안한 컨버터를 기존의 하프 브리지 양방향 컨버터와 비교 분석하고 2kW의 시작품을 제작하여 제안하는 컨버터의 타당성을 검증하였다.

  • PDF

Soft switching tap-inductor boost converter for high efficiency and high step-up (낮은 전압스트레스를 갖는 고효율 탭인덕터 부스트 컨버터)

  • Keum, Moon-Hwan;Kang, Jeong-il;Han, Sang-Kyoo
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.177-178
    • /
    • 2014
  • 본 논문은 낮은 전압 스트레스와 고효율을 갖는 탭인덕터 부스트 컨버터를 제안한다. 기존의 탭인덕터 부스트 컨버터는 스위치의 기생 캐패시턴스와 누설 인덕턴스의 공진으로 인하여 반도체 소자에 높은 전압 스트레스가 발생하고 이를 저감하기 위한 손실스너버의 추가로 전력변환효율이 떨어진다. 하지만 제안회로는 손실스너버없이 스위치와 다이오드를 전압원으로 클램핑하여 낮은 전압스트레스를 가진다. 또한, 탭인덕터의 누설인덕턴스를 이용한 스위치의 영전류 스위칭 턴-온과 캐패시터를 이용한 영전압 스위칭 턴-오프로 스위칭 손실을 매우 저감시켜 높은 전력변환효율을 가진다. 제안회로의 타당성을 증명하기 위하여 이론적 해석과 실험결과 제시하였다.

  • PDF

Digitally Controlled Single-inductor Multiple-output Synchronous DC-DC Boost Converter with Smooth Loop Handover Using 55 nm Process

  • Hayder, Abbas Syed;Park, Young-Jun;Kim, SangYun;Pu, Young-Gun;Yoo, Sang-Sun;Yang, Youngoo;Lee, Minjae;Hwang, Keum Choel;Lee, Kang-Yoon
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.821-834
    • /
    • 2017
  • This paper reports on a single-inductor multiple-output step-up converter with digital control. A systematic analog-to-digital-controller design is explained. The number of digital blocks in the feedback path of the proposed converter has been decreased. The simpler digital pulse-width modulation (DPWM) architecture is then utilized to reduce the power consumption. This architecture has several advantages because counters and a complex digital design are not required. An initially designed unit-delay cell is adopted recursively for the construction of coarse, intermediate, and fine delay blocks. A digital limiter is then designed to allow only useful code for the DPWM. The input voltage is 1.8 V, whereas output voltages are 2 V and 2.2 V. A co-simulation was also conducted utilizing PowerSim and Matlab/Simulink, whereby the 55 nm process was employed in the experimental results to evaluate the performance of the architecture.

Double Boost Power-Decoupling Topology Suitable for Low-Voltage Photovoltaic Residential Applications Using Sliding-Mode Impedance-Shaping Controller

  • Tawfik, Mohamed Atef;Ahmed, Ashraf;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.881-893
    • /
    • 2019
  • This paper proposes a practical sliding-mode controller design for shaping the impedances of cascaded boost-converter power decoupling circuits for reducing the second order harmonic ripple in photovoltaic (PV) current. The cascaded double-boost converter, when used as power decoupling circuit, has some advantages in terms of a high step-up voltage-ratio, a small number of switches and a better efficiency when compared to conventional topologies. From these features, it can be seen that this topology is suitable for residential (PV) rooftop systems. However, a robust controller design capable of rejecting double frequency inverter ripple from passing to the (PV) source is a challenge. The design constraints are related to the principle of the impedance-shaping technique to maximize the output impedance of the input-side boost converter, to block the double frequency PV current ripple component, and to prevent it from passing to the source without degrading the system dynamic responses. The design has a small recovery time in the presence of transients with a low overshoot or undershoot. Moreover, the proposed controller ensures that the ripple component swings freely within a voltage-gap between the (PV) and the DC-link voltages by the small capacitance of the auxiliary DC-link for electrolytic-capacitor elimination. The second boost controls the main DC-link voltage tightly within a satisfactory ripple range. The inverter controller performs maximum power point tracking (MPPT) for the input voltage source using ripple correlation control (RCC). The robustness of the proposed control was verified by varying system parameters under different load conditions. Finally, the proposed controller was verified by simulation and experimental results.

Non-isolated High Step-up ZVZCS DC-DC Converter with Low Turn-off Current (낮은 턴오프 전류를 갖는 비절연 고승압 ZVZCS DC-DC 컨버터)

  • Jung, Byoungkil;Choi, Sewan;Park, Yohan
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.334-335
    • /
    • 2011
  • 본 논문에서는 절연이 요구되지 않는 고승압 응용에 적합한 비절연 고승압 컨버터를 제안한다. 제안하는 컨버터는 기존의 부스트 컨버터에 비해 약 2배의 승압비를 가지며 스위치와 다이오드의 전압 정격이 1/2로 감소되어 RDS(ON)이 작은 소자를 선정할 수 있다. 또한 스위치의 ZVS 턴온과 ZCS 턴오프가 성취되며 보조 회로의 공진을 이용함으로서 기존 방식에 비해 스위치의 턴오프 전류가 낮아져 스위칭 손실이 감소한다. 2kW의 시작품을 제작하여 제안하는 컨버터의 타당성을 검증하였다.

  • PDF

Control of Booster Output Voltage in Fuel Cell Power Plant (연료전지발전용 부스터의 출력전압제어 연구)

  • Han, Soo-Bin;Jung, Bong-Man;Shin, Dong-Ryul;Choi, Soo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1038-1040
    • /
    • 1992
  • Booster is used widely as one of the step-up DC/DC power converter in power conversion process for fuel cell power plant which have the electrical characteristic of the high current density and low cell voltage. In view of control system, booster can be unstable when it is operated in broad operation range because the transfer function of booster has zero in right half plane of s-domain. So for reliable operation, controller must make the system stable in whole working range. In this paper, the two control method such as digital PID control and fuzzy control is studied for booster output voltage regulation in fuel cell plant. The design procedure of PID control and fuzzy control is described. And the experiment of designed controller action is performed in various operation points for controller performance test.

  • PDF