• 제목/요약/키워드: High purity hydrogen

검색결과 112건 처리시간 0.028초

천연가스 개질 방식 중소형 고순도 수소제조 장치 개발 연구 (Study on the development of small-scale hydrogen production unit using steam reforming of natural gas)

  • 서동주;주국택;정운호;박상호;윤왕래
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.720-722
    • /
    • 2009
  • This work is mainly focused at developing the hydrogen production unit with the capacity of 20 $Nm^3/h$ of high purity hydrogen. At present steam reforming of natural gas is the preferable method to produce hydrogen at the point of production cost. The developed hydrogen production unit composed of natural gas reformer and pressure swing adsorption system. To improve the thermal efficiency of steam reforming reactor, the internal heat recuperating structure was adopted. The heat contained in reformed gas which comes out of the catalytic beds recovered by reaction feed stream. These features of design reduce the fuel consumption into burner and the heat duty of external heat exchangers, such as feed pre-heater and steam generator. The production rate of natural gas reformer was 41.7 $Nm^3/h$ as a dryreformate basis. The composition of PSA feed gas was $H_2$ 78.26%, $CO_2$ 18.49%, CO 1.43% and $CH_4$ 1.85%. The integrated production unit can produce 21.1 $Nm^3/h$ of high-purity hydrogen (99.997%). The hydrogen production efficiency of the developed unit was more than 58% as an LHV basis.

  • PDF

패각을 이용한 인산칼슘계 화합물의 제조에 관한 연구 (A study on the preparation of phosphatic calcium compounds using the shell resources)

  • 이인곤;김판채
    • 한국결정성장학회지
    • /
    • 제10권2호
    • /
    • pp.171-176
    • /
    • 2000
  • 패각으로부터 얻어지는 고순도의 소석회와 탄산칼슘을 이용하여 인산1수소칼슘, 수산화아파타이트, 골회 및 인산3칼슘과 같은 인산칼슘계 화합물을 제조하였다. 인산2수소칼슘은 고순도의 소석회와 인산용액을 이용하여 제조하였으며, 그리고 인산1수소칼슘을 출발원료로 하여 고상반응법에 의해 골회를 제조하였고 또 수열처리법을 이용하여 수산화아파타이트를 제조하였다. 인산3칼슘의 제조는 골회와 고순도의 탄산칼슘을 혼합한 뒤 고상반응시켜 제조하였다. 본 연구에서는 이상과 같은 인산칼슘계 화합물에 대한 최적의 제고공정 및 제조 조건을 확립하였다.

  • PDF

전해질 첨가제가 알루미늄-공기전지의 성능에 미치는 영향 (Effect of Electrolyte-Additives on the Performance of Al-Air Cells)

  • 박권필;전해수
    • 공업화학
    • /
    • 제9권1호
    • /
    • pp.52-57
    • /
    • 1998
  • 알루미늄-공기전지의 4M KOH전해질에 아연화합물과 같은 첨가제를 넣어 수소발생 및 알루미늄의 부식에 미치는 영향을 검토하였다. 첨가제중의 아연화합물은 수소발생과전압을 증가시키고, TPC(tripotasium citrate)와 CaO는 알루미늄표면에 치밀한 막을 형성하여 수소발생속도와 알루미늄부식속도를 감소시켰다. 이들 첨가제들에 의해 고순도알루미늄(순도, 99.999%)의 개회로전위는 양의 방향으로, 알루미늄 No 1050(순도, 99.5%)의 개회로전위는 음의 방향으로 약간 이동했다. 개회로전위에서 첨가제는 수소발생속도와 알루미늄 부식속도를 감소시켰으며, 과전압이 증가할수록 수소발생속도가 감소하여 알루미늄의 이용율이 증가하였다. 높은 전류밀도$(>100mA/cm^2)$에서는 TPC/CaO/ZnO 첨가제에 의해 고순도 알루미늄의 이용율이 In,Ga,Tl 합금 알루미늄의 이용율과 비슷하였다.

  • PDF

연료중의 이산화탄소 불순물에 의한 연료전지 성능변화 연구 (Effect of Carbon dioxide in Fuel on the Performance of PEM Fuel Cell)

  • 서중근;권준택;김준범
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.184-187
    • /
    • 2007
  • Hydrogen could be produced from any substance containing hydrogen atoms, such as water, hydrocarbon (HC) fuels, acids or bases. Hydrocarbon fuels couold be converted to hydrogen-rich gas through reforming process for hydrogen production. Even though fuel cell have high efficiency with pure hydrogen from gas tank, it is more beneficial to generate hydrogen from city gas (mainly methane) in residential application such as domestic or office environments. Thus hydrogen is generated by reforming process using hydrocarbon. Unfortunately, the reforming process for hydrogen production is accompanied with unavoidable impurities. Impurities such as CO, $CO_2$, $H_2S$, $NH_3$, and $CH_4$ in hydrogen could cause negative effects on fuel cell performance. Those effects are kinetic losses due to poisoning of electrode catalysts, ohmic losses due to proton conductivity reduction including membrane and catalyst ionomer layers, and mass transport losses due to degrading catalyst layer structure and hydrophobic property. Hydrogen produced from reformer eventually contains around 73% of $H_2$, 20% or less of $CO_2$, 5.8% of less of $N_2$, or 2% less of $CH_4$, and 10ppm or less of CO. Most impurities are removed using pressure swing adsorption (PSA) process to get high purity hydrogen. However, high purity hydrogen production requires high operation cost of reforming process. The effect of carbon dioxide on fuel cell performance was investigated in this experiment. The performance of PEM fuel cell was investigated using current vs. potential experiment, long run (10 hr) test, and electrochemical impedance measurement when the concentrations of carbon dioxide were 10%, 20% and 30%. Also, the concentration of impurity supplied to the fuel cell was verified by gas chromatography (GC).

  • PDF

메탄과 수소의 혼합 가스에 의한 산화주석의 환원 (Reduction of SnO2 by a Mixed Gas of Methane and Hydrogen)

  • 한태양;손유한;김상열;정현철;김현유;이상로;한준현
    • 한국재료학회지
    • /
    • 제28권12호
    • /
    • pp.725-731
    • /
    • 2018
  • We investigate the reduction of $SnO_2$ and the generation of syngas($H_2$, CO) using methane($CH_4$) and hydrogen($H_2$) or a mixed gas of methane and hydrogen as a reducing gas. When methane is used as a reducing gas, carbon is formed by the decomposition of methane on the reduced Sn surface, and the amount of generated carbon increases as the amount and time of the supply of methane increases. However, when hydrogen is used as a reducing gas, carbon is not generated. High purity Sn of 99.8 % and a high recovery rate of Sn of 93 % are obtained under all conditions. The effects of reducing gas species and the gas mixing ratio on the purity and recovery of Sn are not significantly different, but hydrogen is somewhat more effective in increasing the purity and recovery rate of Sn than methane. When 1 mole of methane and 1 mole of hydrogen are mixed, a product gas with an $H_2/CO$ value of 2, which is known to be most useful as syngas, is obtained.

전기화학적 수소 압축기 기술 (A Review of Electrochemical Hydrogen Compressor Technology)

  • 김상경
    • 한국수소및신에너지학회논문집
    • /
    • 제31권6호
    • /
    • pp.578-586
    • /
    • 2020
  • There is growing interest worldwide in a hydrogen economy that uses hydrogen as an energy medium instead of hydrocarbon-based fossil fuels as a way to combat climate change. Since hydrogen has a very low energy density per unit volume at room temperature, hydrogen must be compressed and stored in order to use as an energy carrier. There are mechanical and non-mechanical methods for compressing hydrogen. The mechanical method has disadvantages such as high energy consumption, durability problems of moving parts, hydrogen contamination by lubricants, and noise. Among the non-mechanical compression methods, electrochemical compression consumes less energy and can compress hydrogen with high purity. In this paper, research trends are reviewed, focusing on research papers on electrochemical hydrogen compression technology, and future research directions are suggested.

산화-환원 싸이클 조업에 의한 고순도 수소생성 (High Purity Hydrogen Production by Redox Cycle Operation)

  • 전법주;박지훈
    • 한국수소및신에너지학회논문집
    • /
    • 제21권5호
    • /
    • pp.355-363
    • /
    • 2010
  • High purity hydrogen, 97-99 vol.%, with CO at just ppm levels was obtained in a fixed bed of iron oxide employing the steam-iron cycle operation with reduction at 823K and oxidation in a steam-$N_2$ mixture at 773K TGA experiments indicated that temperature of the reduction step as well as its duration are important for preventing carbon build-up in iron and the intrusion of $CO_2$ into the hydrogen product. At a reduction temperature of 823K, oxide reduction by $H_2$ was considerably faster than reduction by CO. If the length of the reduction step exceeds optimal value, low levels of methane gas appeared in the off-gas. Furthermore, with longer durations of the reduction step and CO levels in the reducing gas greater than 10 vol.%, carbidization of the iron and/or carbon deposition in the bed exhibited the increasing pressure drop over the bed, eventually rendering the reactor inoperable. Reduction using a reducing gas containing 10 vol.% CO and a optimal reduction duration gave constant $H_2$ flow rates and off-gas composition over 10 redox reaction cycles.

막촉매반응기를 이용한 수소생산 (Carbon-free Hydrogen Production Using Membrane Reactors)

  • 도시현;노지수;박호범
    • 멤브레인
    • /
    • 제28권5호
    • /
    • pp.297-306
    • /
    • 2018
  • 본 총설은 분리막기술이 적용된 수소생산에 대한 개론으로, 특히, 암모니아를 수소운반체로 이용하는 수소생산에 대한 연구결과를 중점적으로 서술하였다. 암모니아를 수소운반체로 적용한 수소생산은 추가적인 탄소생성이 없다는 점 외에 여러 측면에 있어 이점이 있다. 많은 연구들이 고순도 수소 분리 및 생산을 위한 분리막 개발을 위해 진행되고 있으며, 이들 중 팔라듐을 기본으로 한 분리막(예를 들어, 다공성 세라믹 또는 다공성 금속 지지체와 팔라듐 합금의 얇은 선택층으로 이루어진 분리막)에 대한 연구가 활발하다. 반면에, 효율적인 암모니아 분해를 위해서는 주로 루테늄 촉매가 적용되고 있으며, 루테늄과 지지체 및 촉진제로 이루어진 루테늄에 기반을 둔 촉매에 대한 연구발표가 다수 존재한다. 수소생산을 위한 분리막 반응기 형태로는 충전층, 유동층, 그리고 마이크로반응기 등이 있으며, 이들의 최적화 및 원활한 물질전달 연구는 현재진행형이다. 또한, 높은 암모니아 분해율, 고순도 수소생산 및 높은 수소생산율을 얻기 위해 분리막과 촉매의 다양한 조합에 대한 연구 및 분리막과 촉매의 역할을 동시에 구현할 수 있는 분리막에 대한 연구가 발표되고 있다.

고순도 수소생산을 위한 고온전이 반응 연구 (Investigation of the High Temperature Shift for a Generation of High Purity Hydrogen)

  • 임문섭;전영남
    • 공업화학
    • /
    • 제19권2호
    • /
    • pp.157-160
    • /
    • 2008
  • 탄화수소 계열의 연료로부터 고순도의 수소를 생산하는 것은 연료전지의 효율적인 운전과 밀접하다. 일반적으로 대부분의 탄화수소 연료에서 수소를 생산하는 과정은 수소, 일산화탄소, 이산화탄소와 수증기 혼합물이 생성되는 개질 과정 및 일산화탄소를 저감하는 전이반응과 선택적 산화반응 과정으로 구성되어 있다. 전이반응은 일산화탄소를 이산화탄소로 전환하는 동시에 수소가 생성되는 고온 전이와 저온전이로 구성된 두 단계의 촉매전환 공정이다. 일반적으로 개질기에서 생성된 개질 가스는 고온전이 반응기를 거쳐 일산화탄소 농도를 3~5%까지 저감한다. 본 연구에서는 고온전이 반응기를 설계 및 제작하여 일산화탄소 농도를 2~4%까지 저감하였다. 고온전이 반응에서 철이 첨가한 촉매(G-3C)를 사용하여 부분산화 개질에서 생성된 일산화탄소를 이산화탄소로 전환하였다. 그리고 고온전이 영향인자인 수증기 주입량, 개질 가스 조성, 반응온도, 개질 가스 주입량변화에 대한 연구를 진행하였다.