DOI QR코드

DOI QR Code

Reduction of SnO2 by a Mixed Gas of Methane and Hydrogen

메탄과 수소의 혼합 가스에 의한 산화주석의 환원

  • Han, Taeyang (Department of Materials Science and Engineering, Chungnam National University) ;
  • Sohn, Youhan (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Sangyeol (A1 Engineering Co. Ltd.) ;
  • Jung, Hyun-Chul (A1 Engineering Co. Ltd.) ;
  • Kim, Hyun You (Department of Materials Science and Engineering, Chungnam National University) ;
  • Lee, San-ro (A1 Engineering Co. Ltd.) ;
  • Han, Jun Hyun (Department of Materials Science and Engineering, Chungnam National University)
  • 한태양 (충남대학교 신소재공학과) ;
  • 손유한 (충남대학교 신소재공학과) ;
  • 김상열 ((주)에이원엔지니어링) ;
  • 정현철 ((주)에이원엔지니어링) ;
  • 김현유 (충남대학교 신소재공학과) ;
  • 이상로 ((주)에이원엔지니어링) ;
  • 한준현 (충남대학교 신소재공학과)
  • Received : 2018.10.05
  • Accepted : 2018.11.15
  • Published : 2018.12.27

Abstract

We investigate the reduction of $SnO_2$ and the generation of syngas($H_2$, CO) using methane($CH_4$) and hydrogen($H_2$) or a mixed gas of methane and hydrogen as a reducing gas. When methane is used as a reducing gas, carbon is formed by the decomposition of methane on the reduced Sn surface, and the amount of generated carbon increases as the amount and time of the supply of methane increases. However, when hydrogen is used as a reducing gas, carbon is not generated. High purity Sn of 99.8 % and a high recovery rate of Sn of 93 % are obtained under all conditions. The effects of reducing gas species and the gas mixing ratio on the purity and recovery of Sn are not significantly different, but hydrogen is somewhat more effective in increasing the purity and recovery rate of Sn than methane. When 1 mole of methane and 1 mole of hydrogen are mixed, a product gas with an $H_2/CO$ value of 2, which is known to be most useful as syngas, is obtained.

Keywords

References

  1. J. T. Thoburn, Tin in the world economy, p.224, Edinburgh, UK: Edinburgh University Press (1994).
  2. J. F. Hennart, J. Econ. Behav. Organ., 9, 281 (1988).
  3. H. J. Snaith, C. Ducati, Nano Lett., 10, 1259 (2010). https://doi.org/10.1021/nl903809r
  4. J. S. Suehle, R. E. Cavicchi, M. Gaitan and S. Semancik, IEEE Electron Device Lett., 14, 118 (1993). https://doi.org/10.1109/55.215130
  5. C. Nayral, T. Ould Ely, A. Maisonnat, B. Chaudret, P. Fau, L. Lescouzeres and A. Peyre Lavigne, Adv. Mater., 11, 61 (1999). https://doi.org/10.1002/(SICI)1521-4095(199901)11:1<61::AID-ADMA61>3.0.CO;2-U
  6. O. Citti, J. A. Williams and C. N. Mcgarry, Tin oxide material with improved electrical properties for glass melting, 8, Google Patents (2010).
  7. U. Betz, M. K. Olsson, J. Marthy, F. Atamny, Surf. Coat. Technol., 200, 5751 (2006). https://doi.org/10.1016/j.surfcoat.2005.08.144
  8. D. S. Ginley, C. Bright, MRS Bull., 25, 15 (2000).
  9. H. Lim, H.-J. Yang, J. W. Kim, J.-S. Bae, J.-W. Kim, B. Jeong, E. Crumlin, S. Park and B. S. Mun, J. Appl. Phys., 120, 205306 (2016). https://doi.org/10.1063/1.4968010
  10. H. J. Park, J. Kim, J. H. Won, K. S. Choi, Y. T. Lim, J. S. Shin, J.-U. Park, Thin Solid Films, 615, 8 (2016). https://doi.org/10.1016/j.tsf.2016.06.040
  11. L. Liu, S. Yellinek, I. Valdinger, A. Donval and D. Mandler, Electrochim. Acta, 176, 1374 (2015). https://doi.org/10.1016/j.electacta.2015.07.129
  12. S. Q. Hussain, S. Kim, S. Ahn, H. Park, A. H. T. Le, S. Lee, Y. Lee, J. H. Lee and J. Yi, Met. Mater. Int., 20, 565 (2014). https://doi.org/10.1007/s12540-014-3001-x
  13. J. Lee, Method for Recycling Tin Oxide or Tin from Plating Tin Waste Liquid, Kor. Patent, 10-2004-0107786 (2004).
  14. J.-W. Ahn and J.-S. Seo, J. of Korean Inst. of Resources Recycling, 18, 44 (2009).
  15. M. Rabah, Hydrometallurgy, 47, 281 (1998). https://doi.org/10.1016/S0304-386X(97)00053-4
  16. R. Sripriya and C. V. Murty, Int. J. Miner. Process., 75, 123 (2005). https://doi.org/10.1016/j.minpro.2004.08.013
  17. A. Mitchell and R. Parker, Miner. Eng., 1, 53 (1988). https://doi.org/10.1016/0892-6875(88)90066-0
  18. G.-W. Shin, Y.-H. Kang, J.-W. Ahn, S.-G. Hyeon, J. of Korean Inst. of Resources Recycling, 24, 51 (2015).
  19. H. N. Kang, J.-Y. Lee and J.-Y. Kim, Hydrometallurgy, 110, 120 (2011). https://doi.org/10.1016/j.hydromet.2011.09.009
  20. T. Han, Y. Sohn, H. Ha, M. Yoo, S. Kim, S.-R. Lee, H. Y. Kim, J. H. Han, Korean J. Met. Mater., 56, 384 (2018) https://doi.org/10.3365/KJMM.2018.56.5.384
  21. H. Ha, M. Yoo, H. An, K. Shin, T. Han, Y. Sohn, S. Kim, S.-R. Lee, J. H. Han and H. Y. Kim, Sci. Rep., 7, 14427 (2017). https://doi.org/10.1038/s41598-017-14826-7
  22. D. C. Upham, V. Agarwal, A. Khechfe, Z. R. Snodgrass, M. J. Gordon, H. Metiu and E. W. McFarland, Science, 358, 917 (2017). https://doi.org/10.1126/science.aao5023
  23. H. Y. Kim, J. N. Park, G. Henkelman, J. M. Kim, ChemSusChem, 5, 1474 (2012). https://doi.org/10.1002/cssc.201100798
  24. J. P. Van Hook, Catal. Rev.: Sci. Eng., 21, 1 (1980). https://doi.org/10.1080/03602458008068059
  25. M. Bradford and M. Vannice, Catal. Rev.: Sci. Eng., 41, 1 (1999). https://doi.org/10.1081/CR-100101948
  26. M. S. Fan, A. Z. Abdullah and S. Bhatia, ChemCatChem, 1, 192 (2009). https://doi.org/10.1002/cctc.200900025
  27. G. P. Van Der Laan and A. Beenackers, Catal. Rev.: Sci. Eng., 41, 255 (1999). https://doi.org/10.1081/CR-100101170