Browse > Article

Investigation of the High Temperature Shift for a Generation of High Purity Hydrogen  

Lim, Mun Sup (BK21 Team for Hydrogen Production-Department Environmental Engineering, Chosun University)
Chun, Young Nam (BK21 Team for Hydrogen Production-Department Environmental Engineering, Chosun University)
Publication Information
Applied Chemistry for Engineering / v.19, no.2, 2008 , pp. 157-160 More about this Journal
Abstract
The generation of high-purity hydrogen from hydrocarbon fuels is essential for efficient operation of fuel cell. In general, most feasible strategies to generate hydrogen from hydrocarbon fuels consist of a reforming step to generate a mixture of $H_2$, CO, $CO_2$ and $H_2O$ (steam) followed by water gas shift (WGS) and CO clean-up steps. The WGS reaction that shifts CO to $CO_2$ and simultaneously produces another mole of $H_2$ was carried out in a two-stage catalytic conversion process involving a high temperature shift (HTS) and a low temperature shift (LTS). In a typical operation, gas emerges from the reformer is taken through a high temperature shift catalyst to reduce the CO concentration to about 3~5%. The HTS reactor was designed and tested in this study to produce hydrogen-rich gas with CO to a range of 2~4%. The iron based catalysts (G-3C) was used for the HTS to convert the most of CO in the effluent from the partial oxidation (POX) to $H_2$ and $CO_2$ at a relatively high rate. Parametric screening studies were carried out for variations of the following variables: reaction temperature, steam flow rate, components ratio ($H_2/CO$), and reforming gas flow rate.
Keywords
high-purity hydrogen; high temperature shift; CO concentration;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 D. J. Moon and B. G. Lee, Korean Chem. Eng. Res., 43, 331 (2005)
2 J. W. Ryu, D. J. Moon, A. N. Kim, S. D. Lee, B. G. Lee, B. S. Ahn, and S. I. Hong, Applied Chemistry, 8, 247 (2004)
3 W. L. Yoon, J. W. Park, Y. W. Rhee, M. W. Han, and J. H. Jeong, HWAHAK KONGHAK, 41, 389 (2003)
4 W. Ruettinger, O. Ilinich, and R. J. Farrauto, Journal of Power Sources, 118, 61 (2003)   DOI   ScienceOn
5 C. Pasquale and M. Fortunato, International Journal of Hydrogen Energy, 32, 55 (2007)   DOI   ScienceOn
6 서유택, 서동주, 정진혁, 윤왕래, 한국 신재생에너지학회 2005년도 춘계학술대회논문집, 231 (2005)
7 Z. G. Zhang, G. W. Xu, X. Chen, K. Honda, and T. Yoshida, Fuel Processing Technology, 85, 1213 (2004)   DOI   ScienceOn
8 DJR. Rostrup-Nielsen, J. Catal, 33, 184 (1974)   DOI   ScienceOn
9 J. E. Son, Hydrogen & fuel cell technology, Korean Chem. Eng. Res., 42, 1(2004)
10 D. J. Moon and J. W. Ryu, Catal. Lett., 92, 17 (2004)   DOI   ScienceOn
11 T. Utaka, T. Takeguchi, R. Kikuchi, and K. Eguchi, Applied Catalysis A: General, 246, 117 (2003)   DOI   ScienceOn
12 S. T. Lin, Y. H. Chen, C. C. Yu, Y. C. Liu, and C. H. Lee, International Journal of Hydrogen Energy, 31, 413 (2006)   DOI   ScienceOn
13 Y. Seo, D. J. Seo, Y. S. Seo, H. S. Roh, J. H. Jeong, and W. L. Yoon, Tans. of the Korea Hydrogen and New Energy Society, 17, 293 (2006)   과학기술학회마을
14 J. Gary, W. Leann, G. Uschi, A. T. Gerald, E. S. Dennis, and H. D. Burtron, Applied Catalysis A: General, 252, 107 (2003)   DOI   ScienceOn
15 M. Echigo, N. Shinke, S. Takami, and T. Tabata, J. Power Sources, 132, 29 (2004)   DOI   ScienceOn
16 Y. S. Oh, T. Y. Song, Y. S. Baek, and L. S. Chol, Tans. of the Korea Hydrogen and New Energy Society, 13, 313 (2002)
17 H. Brejc and E. Supp, Ullmann's encyclopedia of industrial chemistry, A12, 207 (1993)
18 S. Ayabe, H. Omoto, T. Utaka, R. Kikuchi, K. Sasaki, and Y. Teraoka, Applied Catal A, 241, 261 (2003)   DOI   ScienceOn