• Title/Summary/Keyword: High organic wastewater

Search Result 444, Processing Time 0.03 seconds

Effect of Light/dark Cycles on Wastewater Treatments by Microalgae

  • Lee, Kwangyong;Lee, Choul-Gyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.3
    • /
    • pp.194-199
    • /
    • 2001
  • Chlorella kessleri cultivated in artificial wastewater using diurnal illumination of 12h light/12h dark (L/D) cycles. The inoculum density was 10(sup)5 cells/mL and the irradiance in light cycle was 45$\mu$mol㎡s(sup)-1 at the culture surface. As a control culture, another set of flasks was cultivated under continuous illumination. Regardless of the illumination scheme, the total organic carbon (TOC) and chemical oxygen demand (COD) was reduced below 20% of the initial concentration within a day. However, cell concentration under the L/D lighting scheme was lower tan that under the continuous illuminating scheme. Thus the specific removal rate of organic carbon under L/D cycles was higher than that under continuous illumination. This result suggested that C. kessleri grew chemoorganotrophically in the dark periods. After 3 days, nitrate was reduced to 136.5 and 154.1mg NO$_3$-N/L from 168.1mg NO$_3$-N/L under continuous illumination and under diurnal cycles, respectively. These results indicate nitrate removal efficiency under continuous light was better than that under diurnal cycles. High-density algal cultures using optimized photobioreactors with diurnal cycles will save energy and improve organic carbon sources removal.

  • PDF

Technical Evaluation of MBR Process for the Wastewater Treatment of Beverage Fabrication Processes (음료수 제조 공정 폐수의 MBR 처리 기술 평가)

  • Jung, Cheol Joong;Park, Jong Min;Kim, Youn Kook
    • Membrane Journal
    • /
    • v.24 no.1
    • /
    • pp.63-68
    • /
    • 2014
  • Manufacturing facility for non-alcoholic drink, the parts of the food industry, disposes wastewater which includes high organic concentration and low nitrogen, phosphorus concentration. For this kind of wastewater, the treatment plant consists mainly of aerobic reactor and chemical coagulation process. And sand-filter or activated carbon process is normally installed further. However, aerobic reactor must have long HRT to treat high concentration of organic contaminant included in this wastewater, so the large site area is required. And settling tank which is normally applied for wastewater treatment facility has some problems such as water quality degradation caused by the sludge spill. To solve these problems, we applied MBR system for the wastewater. And the MBR pilot plant was installed nearby the wastewater treatment facility of W food factory and operated during long term to evaluate treatment efficiency. This plant was operated about 3 months and than the result was 97% of organic removal rate on conditions of flow rate $20m^3/day$, HRT 29 hr, recycle 4Q. However, contaminant removal ratio of bio-reactor decreased and TMP of membrane increased rapidly on more conditions.

Use of laminar flow water storage tank (LFWS) to mitigate the membrane fouling for reuse of wastewater from wafer processes

  • Sun, Darren Delai;Wu, You
    • Membrane and Water Treatment
    • /
    • v.3 no.4
    • /
    • pp.221-230
    • /
    • 2012
  • This study employed the modified fouling index (MFI) to determine the performance of a two-step recycling system - a membrane filtration integrated laminar flow water storage (LFWS) tank followed by an ion exchange process to reclaim ultrapure water (UPW) from the wastewater generated from semiconductor wafer backgrinding and sawing processes. The first step consisted of the utilization of either ultrafiltration (UF) or nanofiltration (NF) membranes to remove solids in the wastewater where the second step consisted of an ion exchanger to further purify the filtrate. The system was able to produce high purity water in a continuous operating mode. However, higher recycling cost could be incurred due to membrane fouling. The feed wastewater used for this study contained high concentration of fine particles with low organic and ionic contents, hence membrane fouling was mainly attributed to particulate deposition and cake formation. Based on the MFI results, a LFWS tank that was equipped with a turbulence reducer with a pair of auto-valves was developed and found effective in minimizing fouling by discharging concentrated wastewater prior to any membrane filtration. By comparing flux behaviors of the improved system with the conventional system, the former maintained a high flux than the latter at the end of the experiment.

Control of Excessive Biofilm for the Treatment of High Strength Organic Wastewater by Biofilm Process (생물막공법에 의한 고농도 유기폐수 처리시 생물막 과부착 제어)

  • 임재명;권재혁;한동준
    • Journal of environmental and Sanitary engineering
    • /
    • v.10 no.3
    • /
    • pp.67-77
    • /
    • 1995
  • This study was performed for minimization of excessive biofilm effects at the high strength organic wastewater treatment. As a results of biofilm attachment experiment using piggery wastewater, aggravation of water quality due to excessive biofilm showed after 15 days of operating times.4 excessive biofilm phase, the equivalent biofilm thickness and VSS contents per unit aura were observed in the range of 1,100 to $1,200{\mu}m$ and 2.5 to 3.0mg $VSS/cm^{2}$, respectively. In the aerobic fixed biofilm reactor/anoxic fixed biofilm reactor(AFBR/ANFBR) process with endogenous respiration phase, the BOD removal efficiency was obtained more than 90 percentage at the surface loading rate and volumetric loading rate of the AFBR maintained less than 17 g $BOD/m^{2}{\cdot}$day and 1.7kg $BOD/m^{3}{\cdot}$day, respectively. The removal efficiency of TKN and $NH_{3}$-N at the loading rates below 5.60g $NH_{3}-N/m^{2}{\cdot}day$ and 0.56kg $NH_{3}-N/m^{3}{\cdot}$day were above 76 percentage and 82 percentage, respectively. In order to reduced sludge production rate and aggravation of water quality, endogenous respiration phase was accepted at first AFBR reactor. As a results of this operating condition, sludge production was minimized and removal efficiency was maintained stability.

  • PDF

Performance and microbial community analysis for fouling characteristics in a full-scale flat sheet membrane bioreactor (실규모 flat sheet MBR 운영 효율과 Fouling 특성을 위한 미생물 군집 평가)

  • Seungwon Kim;Jeongdong Choi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.6
    • /
    • pp.325-334
    • /
    • 2023
  • Membrane bioreactor (MBR) provides the benefits on high effluent quality and construction cost without the secondary clarification. Despite of these advantages, fouling, which clogs the pore in membrane modules, affects the membrane life span and effluent quality. Studies on the laboratory scale MBR were focused on the control of particulate fouling, organic fouling and inorganic fouling. However, less studies were focused on the control of biofouling and microbial aspect of membrane. In the full scale operation, most MBR produces high effluent quality to meet the national permit of discharge regulation. In this study, the performance and microbial community analysis were investigated in two MBRs. As the results, the performance of organic removal, nitrogen removal, and phosphorus removal was similar both MBRs. Microbial community analysis, however, showed that Azonexus sp. and Propionivibrio sp. contributed to indirect fouling to cause the chemical cleaning in the DX MBR.

Improved Calibration for the Analysis of Emerging Contaminants in Wastewater Using Ultra High Performance Liquid Chromatography and Time-of-Flight Mass Spectrometry

  • Pellinen, Jukka;Lepisto, Riikka-Juulia;Savolainen, Santeri
    • Mass Spectrometry Letters
    • /
    • v.9 no.3
    • /
    • pp.77-80
    • /
    • 2018
  • The focus of this paper is to present techniques to overcome certain difficulties in quantitative analysis with a time-of-flight mass spectrometer (TOF-MS). The method is based on conventional solid-phase extraction, followed by reversed-phase ultra high performance liquid chromatography of the extract, and mass spectrometric analysis. The target compounds included atenolol, atrazine, caffeine, carbamazepine, diclofenac, estrone, ibuprofen, naproxen, simazine, sucralose, sulfamethoxazole, and triclosan. The matrix effects caused by high concentrations of organic compounds in wastewater are especially significant in electrospray ionization mass spectroscopy. Internal-standard calibration with isotopically labeled standards corrects the results for many matrix effects, but some peculiarities were observed. The problems encountered in quantitation of carbamazepine and triclosan, due to nonlinear calibration were solved by changing the internal standard and using a narrower mass window. With simazine, the use of a quadratic calibration curve was the best solution.

Efficient Anaerobic Digestion for Highly Concentrated Particulate Organic Wastewater (고농도 입자성 유기폐수의 고효율 혐기성 소화 공정)

  • Lee, Sungbum;Shin, Kyuchul;Kim, Huijoo;Kim, Hyunju;Choi, Changkyoo;Kim, Moonil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.2
    • /
    • pp.23-29
    • /
    • 2008
  • It has been mentioned that CSTR (Completely Stirred Tank Reactor) and UASB (Upflow Anaerobic Sludge Blanket) processes, the existing anaerobic processes, have problems in the treatment of highly concentrated particulate organic wastewater (HCPOW). Therefore, this paper discusses the treatment possibility of distillery wastewater which is a typical HCPOW using ADEPT (anaerobic Digestion Elutriated Phased Treatment) process. In the comparison of CSTR and ADEPT, ADEPT produced much higher gas than that of CSTR removing more organic matters and suspended solids in ADEPT process, ADEPT had no effect on the decrease in pH by volatile fatty acids and showed steady pH in spite of relatively short HRT. In the results of removal rate according to recycle ratios between 6Qin and 2Qin in ADEPT, 6Qin showed high removal rate during the operation time. Therefore it appears that ADEPT had an applicability for the treatment of distillery wastewater. ADEPT could be a economical process, due to the short HRT, the energy recovery by the methane production, and the utilization for carbon source of produced organic acid from the ADEPT-acid reactor.

  • PDF

Improvement of the Advanced Treatment for Nitrogen Removal of Acrylic Fiber Wastewater (아크릴섬유 폐수의 생물학적 질소제거공정의 개선)

  • Lee, Chan-Won;Cho, In-Sung;Lim, Kyeong-Won
    • Journal of Environmental Science International
    • /
    • v.15 no.5
    • /
    • pp.439-446
    • /
    • 2006
  • The effluent discharge standards of industrial wastewater has become more stringent since 2003. Many industrial wastewater treatment plants has been upgraded to advanced treatment facilities. There are high concentrations of nitrate(>200 mg/L) and ammonium(>50 mg/L) nitrogen in the acrylic fiber wastewater of H textile Co. Wastewater from acrylic fiber industry containing acrylonitrile, which may affect the subsequent biological treatment process. Manufacturing of acrylic fiber also produces shock loadings. Excessive acrylonitrile and polymer debris produced in the polymerization process was screened, coagulated with CaO and settled down. A preaeration system was added to treat this high pH effluent to remove volatile organic compound and ammonia nitrogen by the air stripping effect. it was found that nitrification rate was not sufficient in the Anoxic/Oxic(AO) process. One denitrification tank was converted to nitrification reactor to extend HRT of nitrification. Nitrification rate of ammonia nitrogen was promoted from 32% to 67% by this modification and effluent nitrogen concentration was well satisfied with the effluent standards since then.

Analysis of Water Quality Components and Antibiotics in the Final Effluent of Wastewater Treatment Facilities in the Nakdong River Basin (낙동강 유역에 위치한 폐수처리시설 최종방류수의 수질과 항생물질 분석)

  • Park, Kyeong-deok;Kang, Dong-hwan;Jo, Won Gi;Yu, Hun Sun;Yoon, Yeon Su;Kim, Byung-Woo
    • Journal of Environmental Science International
    • /
    • v.29 no.8
    • /
    • pp.857-870
    • /
    • 2020
  • In this study, the antibiotic components in the final effluent from the 12 wastewater treatment facilities located in the Nakdong River basin were investigated, and the correlation between organic matters, nutrients and antibiotics was analyzed. In the final effluent of the wastewater treatment facilities, three sulfonamides antibiotics (sulfamethazine, sulfathiazole, sulfachlorpyridazine) and tetracyclines antibiotics (oxytetracycline, doxycycline) were detected. Sulfamethazine were detected at all points and ranged from 10.398 to 278.784 ng/L. Sulfathiazole were detected at 6 points (Andong, Gumi, Hapcheon, Miryang, Uiryeong, Haman), and ranged from 23.773 to 144.468 ng/L. The correlation coefficients between sulfathiazole and TSS, COD, TOC, NH3-N, NO2-N, and T-N components were high in the range of 0.73 to 0.92. The correlation coefficient between sulfamethazine and T-N was 0.48, and the correlation with the rest of the water quality components was low. The correlation coefficient between sulfamethazine and sulfathiazole was 0.78. Through this study, it was confirmed that the concentration of sulfonamides antibiotics was higher than the concentration of tetracyclines antibiotics in the final effluent of 12 wastewater treatment facilities in the Nakdong River basin, and the concentration of sulfathiazole increased with organic matters and nutrients.

Treatment of Paper Mill Wastewater by the Deep Shaft Activated Sludge Process (심층폭기(深層曝氣) 활성(活性)슬러지법(法)을 이용(利用)한 제지폐수(製紙廢水)의 생물학적(生物學的) 처리(處理)에 관한 연구(研究))

  • Kim, Hwan Gi;Yang, Bong Yong;Lee, Bok Yul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.275-284
    • /
    • 1992
  • A generated problem in treated highly concentrated organic wastewater by activated sludge process is the limitation of biomass concentration and oxygen transfer capability in aeration tank. To overcome the limitation, the deep shaft activated sludge process which has high oxygen transfer capability was applied to the wastewater treatment process. This paper investigated the characteristics of liquid circulation, oxygen transfer and biological treatment of paper mill wastewater by the deep shaft activated sludge process. From the obtained results, it was found that the oxygen transfer capability in the deep shaft system was much greater than those in the conventional aeration systems and almost tantamount to the pure oxygen system. The deep shaft system could treat highly concentrated organic wastewater by higher biomass concentration and organic loading rate.

  • PDF