Browse > Article
http://dx.doi.org/10.5478/MSL.2018.9.3.77

Improved Calibration for the Analysis of Emerging Contaminants in Wastewater Using Ultra High Performance Liquid Chromatography and Time-of-Flight Mass Spectrometry  

Pellinen, Jukka (University of Helsinki, Faculty of Biological and Environmental Sciences)
Lepisto, Riikka-Juulia (University of Helsinki, Faculty of Biological and Environmental Sciences)
Savolainen, Santeri (University of Helsinki, Faculty of Biological and Environmental Sciences)
Publication Information
Mass Spectrometry Letters / v.9, no.3, 2018 , pp. 77-80 More about this Journal
Abstract
The focus of this paper is to present techniques to overcome certain difficulties in quantitative analysis with a time-of-flight mass spectrometer (TOF-MS). The method is based on conventional solid-phase extraction, followed by reversed-phase ultra high performance liquid chromatography of the extract, and mass spectrometric analysis. The target compounds included atenolol, atrazine, caffeine, carbamazepine, diclofenac, estrone, ibuprofen, naproxen, simazine, sucralose, sulfamethoxazole, and triclosan. The matrix effects caused by high concentrations of organic compounds in wastewater are especially significant in electrospray ionization mass spectroscopy. Internal-standard calibration with isotopically labeled standards corrects the results for many matrix effects, but some peculiarities were observed. The problems encountered in quantitation of carbamazepine and triclosan, due to nonlinear calibration were solved by changing the internal standard and using a narrower mass window. With simazine, the use of a quadratic calibration curve was the best solution.
Keywords
emerging contaminant; time-of-flight mass spectrometry; method development; municipal wastewater; internal standard calibration;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ferrer, I.; Thurman, E. M. Trends Anal. Chem. 2003, 22, 750.   DOI
2 Petrovic, M.; Gonzalez, S.; Barcelo, D. Trends Anal. Chem. 2003, 22, 685.   DOI
3 Fatta, D.; Nikolaou, A.; Achilleos, A.; Meric, S. Trends Anal. Chem. 2007, 26, 515.   DOI
4 Petrie, B.; Barden, R.; Kasprzyk-Hordern, B. Water Res. 2015, 72, 3.   DOI
5 Lindholm, P. C.; Knuutinen, J. S.; Ahkola, H. S. J.; Herve, S. H. BioResources 2014, 9, 3688.
6 Rodriguez-Chueca, J.; Garcia-Canibano, C.; Lepisto, R. -J.; Encinas, A.; Pellinen, J.; Marugan, J. J. Hazardous Mater. in press. https://doi.org/10.1016/j.jhazmat.2018.04.044.   DOI
7 Petrie, B.; Youdan, J.; Barden, R.; Kasprzyk-Hordern, B. J. Chromatogr. A 2016, 1431, 64.   DOI
8 Gomez, M. J.; Gomez-Ramos, M. M.; Malato, O.; Mezcua, M.; Fernandez-Alba, A. R. J. Chromatogr. A 2010, 1217, 7038.   DOI
9 Nurmi, J.; Pellinen. J. J. Chromatogr. A 2011, 1218, 6712.   DOI
10 Berg, T.; Strand D. H. J. Chromatogr. A. 2011, 1218, 9366.   DOI
11 Meng, C. -K. Agilent Application Note 5989-5319EN; See https://www.agilent.com/cs/library/applications/5989-5319EN.pdf.
12 Al-Qaim, F. F.; Abdullah, M. P.; Othman, M. R.; Latip, J.; Afiq, W. J. Braz. Chem. Soc. 2014, 25, 271.