DOI QR코드

DOI QR Code

Improved Calibration for the Analysis of Emerging Contaminants in Wastewater Using Ultra High Performance Liquid Chromatography and Time-of-Flight Mass Spectrometry

  • Pellinen, Jukka (University of Helsinki, Faculty of Biological and Environmental Sciences) ;
  • Lepisto, Riikka-Juulia (University of Helsinki, Faculty of Biological and Environmental Sciences) ;
  • Savolainen, Santeri (University of Helsinki, Faculty of Biological and Environmental Sciences)
  • Received : 2018.06.28
  • Accepted : 2018.08.02
  • Published : 2018.09.30

Abstract

The focus of this paper is to present techniques to overcome certain difficulties in quantitative analysis with a time-of-flight mass spectrometer (TOF-MS). The method is based on conventional solid-phase extraction, followed by reversed-phase ultra high performance liquid chromatography of the extract, and mass spectrometric analysis. The target compounds included atenolol, atrazine, caffeine, carbamazepine, diclofenac, estrone, ibuprofen, naproxen, simazine, sucralose, sulfamethoxazole, and triclosan. The matrix effects caused by high concentrations of organic compounds in wastewater are especially significant in electrospray ionization mass spectroscopy. Internal-standard calibration with isotopically labeled standards corrects the results for many matrix effects, but some peculiarities were observed. The problems encountered in quantitation of carbamazepine and triclosan, due to nonlinear calibration were solved by changing the internal standard and using a narrower mass window. With simazine, the use of a quadratic calibration curve was the best solution.

Keywords

References

  1. Ferrer, I.; Thurman, E. M. Trends Anal. Chem. 2003, 22, 750. https://doi.org/10.1016/S0165-9936(03)01013-6
  2. Petrovic, M.; Gonzalez, S.; Barcelo, D. Trends Anal. Chem. 2003, 22, 685. https://doi.org/10.1016/S0165-9936(03)01105-1
  3. Fatta, D.; Nikolaou, A.; Achilleos, A.; Meric, S. Trends Anal. Chem. 2007, 26, 515. https://doi.org/10.1016/j.trac.2007.02.001
  4. Petrie, B.; Barden, R.; Kasprzyk-Hordern, B. Water Res. 2015, 72, 3. https://doi.org/10.1016/j.watres.2014.08.053
  5. Lindholm, P. C.; Knuutinen, J. S.; Ahkola, H. S. J.; Herve, S. H. BioResources 2014, 9, 3688.
  6. Rodriguez-Chueca, J.; Garcia-Canibano, C.; Lepisto, R. -J.; Encinas, A.; Pellinen, J.; Marugan, J. J. Hazardous Mater. in press. https://doi.org/10.1016/j.jhazmat.2018.04.044.
  7. Petrie, B.; Youdan, J.; Barden, R.; Kasprzyk-Hordern, B. J. Chromatogr. A 2016, 1431, 64. https://doi.org/10.1016/j.chroma.2015.12.036
  8. Gomez, M. J.; Gomez-Ramos, M. M.; Malato, O.; Mezcua, M.; Fernandez-Alba, A. R. J. Chromatogr. A 2010, 1217, 7038. https://doi.org/10.1016/j.chroma.2010.08.070
  9. Nurmi, J.; Pellinen. J. J. Chromatogr. A 2011, 1218, 6712. https://doi.org/10.1016/j.chroma.2011.07.071
  10. Berg, T.; Strand D. H. J. Chromatogr. A. 2011, 1218, 9366. https://doi.org/10.1016/j.chroma.2011.10.081
  11. Meng, C. -K. Agilent Application Note 5989-5319EN; See https://www.agilent.com/cs/library/applications/5989-5319EN.pdf.
  12. Al-Qaim, F. F.; Abdullah, M. P.; Othman, M. R.; Latip, J.; Afiq, W. J. Braz. Chem. Soc. 2014, 25, 271.