• 제목/요약/키워드: High mobility TFT

검색결과 137건 처리시간 0.04초

InGaZnO active layer 두께에 따른 thin-film transistor 전기적인 영향

  • 우창호;김영이;안철현;김동찬;공보현;배영숙;서동규;조형균
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.5-5
    • /
    • 2009
  • Thin-film-transistors (TFTs) that can be prepared at low temperatures have attracted much attention because of the great potential for transparent and flexible electronics. One of the mainstreams in this field is the use of organic semiconductors such as pentacene. But device performance of the organic TFTs is still limited due to low field-effect mobility and rapid degradation after exposing to air. Alternative approach is the use of amorphous oxide semiconductors as a channel. Amorphous oxide semiconductors (AOSs) based TFTs showed the fast technological development, because AOS films can be fabricated at room temperature and exhibit the possibility in application like flexible display, electronic paper, and larges solar cells. Among the various AOSs, a-IGZO has lots of advantages because it has high channel mobility, uniform surface roughness and good transparency. [1] The high mobility is attributed to the overlap of spherical s-orbital of the heavy post-transition metal cations. This study demonstrated the effect of the variation in channel thickness from 30nm to 200nm on the TFT device performance. When the thickness was increased, turn-on voltage and subthreshold swing was decreased. The a-IGZO channels and source/drain metals were deposited with shadow mask. The a-IGZO channel layer was deposited on $SiO_2$/p-Si substrates by RF magnetron sputtering, where RF power is 150W. And working pressure is 3m Torr, at $O_2/Ar$ (2/28 sccm) atmosphere. The electrodes were formed with electron-beam evaporated Ti (30 nm) and Au (70 nm) bilayer. Finally, Al (150nm) as a gate metal was thermal-evaporated. TFT devices were heat-treated in a furnace at 250 $^{\circ}C$ and nitrogen atmosphere for 1hour. The electrical properties of the TFTs were measured using a probe-station. The TFT with channel thickness of 150nm exhibits a good subthreshold swing (SS) of 0.72 V/decade and on-off ratio of $1{\times}10^8$. The field effect mobility and threshold voltage were evaluated as 7.2 and 8 V, respectively.

  • PDF

고유전 $MgO_{0.3}BST_{0.7}$ 게이트 절연막을 이용한 $InGaZnO_4$ 기반의 트랜지스터의 저전압 구동 특성 연구 (Low voltage operating $InGaZnO_4$ thin film transistors using high-k $MgO_{0.3}BST_{0.7}$ gate dielectric)

  • 김동훈;조남규;장영은;김호기;김일두
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.40-40
    • /
    • 2008
  • $InGaZnO_4$ based thin film transistors (TFTs) are of interest for large area and low cost electronics. The TFTs have strong potential for application in flat panel displays and portable electronics due to their high field effect mobility, high on/off current ratios, and high optical transparency. The application of such room temperature processed transistors, however, is often limited by the operation voltage and long-tenn stability. Therefore, attaining an optimum thickness is necessary. We investigated the thickness dependence of a room temperature grown $MgO_{0.3}BST_{0.7}$ composite gate dielectric and an $InGaZnO_4$ (IGZO) active semiconductor on the electrical characteristics of thin film transistors fabricated on a polyethylene terephthalate (PET) substrate. The TFT characteristics were changed markedly with variation of the gate dielectric and semiconductor thickness. The optimum gate dielectric and active semiconductor thickness were 300 nm and 30 nm, respectively. The TFT showed low operating voltage of less than 4 V, field effect mobility of 21.34 cm2/$V{\cdot}s$, an on/off ratio of $8.27\times10^6$, threshold voltage of 2.2 V, and a subthreshold swing of 0.42 V/dec.

  • PDF

Fabrication of IGZO-based Oxide TFTs by Electron-assisted Sputtering Process

  • 윤영준;조성환;김창열;남상훈;이학민;오종석;김용환
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.273.2-273.2
    • /
    • 2014
  • Sputtering process has been widely used in Si-based semiconductor industry and it is also an ideal method to deposit transparent oxide materials for thin-film transistors (TFTs). The oxide films grown at low temperature by conventional RF sputtering process are typically amorphous state with low density including a large number of defects such as dangling bonds and oxygen vacancies. Those play a crucial role in the electron conduction in transparent electrode, while those are the origin of instability of semiconducting channel in oxide TFTs due to electron trapping. Therefore, post treatments such as high temperature annealing process have been commonly progressed to obtain high reliability and good stability. In this work, the scheme of electron-assisted RF sputtering process for high quality transparent oxide films was suggested. Through the additional electron supply into the plasma during sputtering process, the working pressure could be kept below $5{\times}10-4Torr$. Therefore, both the mean free path and the mobility of sputtered atoms were increased and the well ordered and the highly dense microstructure could be obtained compared to those of conventional sputtering condition. In this work, the physical properties of transparent oxide films such as conducting indium tin oxide and semiconducting indium gallium zinc oxide films grown by electron-assisted sputtering process will be discussed in detail. Those films showed the high conductivity and the high mobility without additional post annealing process. In addition, oxide TFT characteristics based on IGZO channel and ITO electrode will be shown.

  • PDF

Sol-gel deposited TiInO thin-films transistor with Ti effect

  • Kim, Jung-Hye;Son, Dae-Ho;Kim, Dae-Hwan;Kang, Jin-Kyu;Ha, Ki-Ryong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.200-200
    • /
    • 2010
  • In recent times, metal oxide semiconductors thin films transistor (TFT), such as zinc and indium based oxide TFTs, have attracted considerable attention because of their several advantageous electrical and optical properties. There are many deposition methods for fabrication of ZnO-based materials such as chemical vapor deposition, RF/DC sputtering and pulsed laser deposition. However, these vacuum process require expensive equipment and result in high manufacturing costs. Also, the methods is difficult to fabricate various multicomponent oxide semiconductor. Recently, several groups report solution processed metal oxide TFTs for low cost and non vacuum process. In this study, we have newly developed solution-processed TFTs based on Ti-related multi-component transparent oxide, i. e., InTiO as the active layer. We propose new multicomponent oxide, Titanium indium oxide(TiInO), to fabricate the high performance TFT through the sol-gel method. We investigated the influence of relative compositions of Ti on the electrical properties. Indium nitrate hydrate [$In(NO^3).xH_2O$] and Titanium isobutoxide [$C_{16}H_{36}O_4Ti$] were dissolved in acetylacetone. Then monoethanolamine (MEA) and acetic acid ($CH_3COOH$) were added to the solution. The molar concentration of indium was kept as 0.1 mol concentration and the amount of Ti was varied according to weighting percent (0, 5, 10%). The complex solutions become clear and homogeneous after stirring for 24 hours. Heavily boron (p+) doped Si wafer with 100nm thermally grown $SiO_2$ serve as the gate and gate dielectric of the TFT, respectively. TiInO thin films were deposited using the sol-gel solution by the spin-coating method. After coating, the films annealed in a tube furnace at $500^{\circ}C$ for 1hour under oxygen ambient. The 5% Ti-doped InO TFT had a field-effect mobility $1.15cm^2/V{\cdot}S$, a threshold voltage of 4.73 V, an on/off current ratio grater than $10^7$, and a subthreshold slop of 0.49 V/dec. The 10% Ti-doped InO TFT had a field-effect mobility $1.03\;cm^2/V{\cdot}S$, a threshold voltage of 1.87 V, an on/off current ration grater than $10^7$, and a subthreshold slop of 0.67 V/dec.

  • PDF

대기압 플라즈마를 이용한 산화물 박막 트랜지스터 표면처리에 관한 연구 (The Study of Improvement in the Characteristics of Oxide Thin Film Transistor by using Atmospheric Pressure Plasma)

  • 김가영;김경남;염근영
    • 한국표면공학회지
    • /
    • 제48권1호
    • /
    • pp.7-10
    • /
    • 2015
  • Recently, oxide TFTs has attracted a lot of interests due to their outstanding properties such as excellent environmental stability, high mobility, wide-band gap energy and high transparency, and investigated through the method using vacuum system and wet solution. In the case of the method using wet solution, process is very simple, however, annealing process should be included. In this study, to overcome the problem of annealing process, atmospheric pressure plasma was used for annealing, and the electrical characteristics such as on/off ration and mobility of device were investigated.

Electrical Properties of Local Bottom-Gated MoS2 Thin-Film Transistor

  • Kwon, Junyeon;Lee, Youngbok;Song, Wongeun;Kim, Sunkook
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.375-375
    • /
    • 2014
  • Layered semiconductor materials can be a promising candidate for large-area thin film transistors (TFTs) due to their relatively high mobility, low-power switching, mechanically flexibility, optically transparency, and amenability to a low-cost, large-area growth technique like thermal chemical vapor deposition (CVD). Unlike 2D graphene, series of transition metal dichalcogenides (TMDCs), $MX_2$ (M=Ta, Mo, W, X=S, Se, Te), have a finite bandgap (1~2 eV), which makes them highly attractive for electronics switching devices. Recently, 2D $MoS_2$ materials can be expected as next generation high-mobility thin-film transistors for OLED and LCD backplane. In this paper, we investigate in detail the electrical characteristics of 2D layered $MoS_2$ local bottom-gated transistor with the same device structure of the conventional thin film transistor, and expect the feasibility of display application.

  • PDF

The effect of negative bias stress stability in high mobility In-Ga-O TFTs

  • Jo, Kwang-Min;Sung, Sang-Yun;You, Jae-Lok;Kim, Se-Yun;Lee, Joon-Hyung;Kim, Jeong-Joo;Heo, Young-Woo
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.154-154
    • /
    • 2013
  • In this work, we investigated the characteristics and the effects of light on the negative gate bias stress stability (NBS) in high mobility polycrystalline IGO TFTs. IGO TFT showed a high drain current on/off ratio of ${\sim}10^9$, a field-effect mobility of $114cm^2/Vs$, a threshold voltage of -4V, and a subthresholdslpe(SS) of 0.28V/decade from log($I_{DS}$) vs $V_{GS}$. IGO TFTs showed large negative $V_{TH}$ shift(17V) at light power of $5mW/cm^2$ with negative gate bias stress of -10V for 10000seconds, at a fixed drain voltage ($V_{DS}$) of 0.5V.

  • PDF

Non-monotonic Size Dependence of Electron Mobility in Indium Oxide Nanocrystals Thin Film Transistor

  • Pham, Hien Thu;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권8호
    • /
    • pp.2505-2511
    • /
    • 2014
  • Indium oxide nanocrystals ($In_2O_3$ NCs) with sizes of 5.5 nm-10 nm were synthesized by hot injection of the mixture precursors, indium acetate and oleic acid, into alcohol solution (1-octadecanol and 1-octadecence mixture). Field emission transmission electron microscopy (FE-TEM), High resolution X-Ray diffraction (X-ray), Nuclear magnetic resonance (NMR), and Fourier transform infrared spectroscopy (FT-IR) were employed to investigate the size, surface molecular structure, and crystallinity of the synthesized $In_2O_3$ NCs. When covered by oleic acid as a capping group, the $In_2O_3$ NCs had a high crystallinity with a cubic structure, demonstrating a narrow size distribution. A high mobility of $2.51cm^2/V{\cdot}s$ and an on/off current ratio of about $1.0{\times}10^3$ were observed with an $In_2O_3$ NCs thin film transistor (TFT) device, where the channel layer of $In_2O_3$ NCs thin films were formed by a solution process of spin coating, cured at a relatively low temperature, $350^{\circ}C$. A size-dependent, non-monotonic trend on electron mobility was distinctly observed: the electron mobility increased from $0.43cm^2/V{\cdot}s$ for NCs with a 5.5 nm diameter to $2.51cm^2/V{\cdot}s$ for NCs with a diameter of 7.1 nm, and then decreased for NCs larger than 7.1 nm. This phenomenon is clearly explained by the combination of a smaller number of hops, a decrease in charging energy, and a decrease in electronic coupling with the increasing NC size, where the crossover diameter is estimated to be 7.1 nm. The decrease in electronic coupling proved to be the decisive factor giving rise to the decrease in the mobility associated with increasing size in the larger NCs above the crossover diameter.

Effects of thickness of GIZO active layer on device performance in oxide thin-film-transistors

  • Woo, C.H.;Jang, G.J.;Kim, Y.H.;Kong, B.H.;Cho, H.K.
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.137-137
    • /
    • 2009
  • Thin-film transistors (TFTs) that can be prepared at low temperatures have attracted much attention due to the great potential for flexible electronics. One of the mainstreams in this field is the use of organic semiconductors such as pentacene. But device performance of the organic TFTs is still limited by low field effect mobility or rapidly degraded after exposing to air in many cases. Another approach is amorphous oxide semiconductors. Amorphous oxide semiconductors (AOSs) have exactly attracted considerable attention because AOSs were fabricated at room temperature and used lots of application such as flexible display, electronic paper, large solar cells. Among the various AOSs, a-IGZO was considerable material because it has high mobility and uniform surface and good transparent. The high mobility is attributed to the result of the overlap of spherical s-orbital of the heavy pest-transition metal cations. This study is demonstrated the effect of thickness channel layer from 30nm to 200nm. when the thickness was increased, turn on voltage and subthreshold swing were decreased. a-IGZO TFTs have used a shadow mask to deposit channel and source/drain(S/D). a-IGZO were deposited on SiO2 wafer by rf magnetron sputtering. using power is 150W, working pressure is 3m Torr, and an O2/Ar(2/28 SCCM) atmosphere at room temperature. The electrodes were formed with Electron-beam evaporated Ti(30nm) and Au(70nm) structure. Finally, Al(150nm) as a gate metal was evaporated. TFT devices were heat treated in a furnace at $250^{\circ}C$ in nitrogen atmosphere for an hour. The electrical properties of the TFTs were measured using a probe-station to measure I-V characteristic. TFT whose thickness was 150nm exhibits a good subthreshold swing(S) of 0.72 V/decade and high on-off ratio of 1E+08. Field effect mobility, saturation effect mobility, and threshold voltage were evaluated 7.2, 5.8, 8V respectively.

  • PDF

저온 Poly-Si TFT를 이용한 저소비전력 레벨 쉬프터 (A Low-Power Level Shifter Using Low Temperature Poly-Si TFTs)

  • 안정근;최병덕;권오경
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2005년도 추계종합학술대회
    • /
    • pp.747-750
    • /
    • 2005
  • In this paper, we propose a new level shifter circuit for reducing power consumption. The concept of the proposed level shifter is to use capacitive coupling effect to reduce short circuit current. The power consumption of the proposed level shifter is reduced up to 50%, compared to the conventional level shifter. Especially the proposed level shifter circuit works well with low temperature poly-Si (LTPS) TFTs. It can operate on low input voltage even with low-mobility, high and widely-varying threshold voltage of LTPS TFT.

  • PDF