• Title/Summary/Keyword: High hydrostatic pressure

Search Result 167, Processing Time 0.032 seconds

Review of the Structural Shape for Aft Transition Ring of Submarine (잠수함 함미 트랜지션 링 구조 형상에 대한 고찰)

  • Oh, Dohan;Ahn, Namhyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.936-944
    • /
    • 2019
  • Submarines, which have been called an invisible force, are strategic underwater weapon systems that perform missions such as anti-surface warfare, anti-submarine warfare, and high payoff target strikes with the advantage of underwater covertness. A submarine should be able to withstand the hydrostatic pressure of the deep sea. In this respect, the submarine pressure hull, as the main structural system to resist the external pressure corresponding to the submerged depth, should ensure the survivability from hazards and threats such as leakage, fires, shock, explosion, etc. To do this, the initial scantling of the submarine pressure hull must be calculated appropriately in the concept design phase. The shape of the aft transition ring varies according to its connection with the submarine aft end conical structure, pressure hull cylindrical part, and non-pressure hull of the submarine; the design of the aft transition ring should not only take into account stress flow and connectivity but also the cost increase due to the increased man-hours of its complex geometry. Therefore, trade-off studies based on the four different shapes of the aft transition ring are carried out considering both the review of the structural strength through nonlinear finite element analysis (FEA) and economic feasibility by reviewing the estimations of the manufacturing working days and material costs. Finally, the most rational structural aft transition ring shape for a submarine amongst four reviewed types was proposed.

Three-dimensional numerical simulation of hydrogen-induced multi-field coupling behavior in cracked zircaloy cladding tubes

  • Xia, Zhongjia;Wang, Bingzhong;Zhang, Jingyu;Ding, Shurong;Chen, Liang;Pang, Hua;Song, Xiaoming
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.238-248
    • /
    • 2019
  • In the high-temperature and high-pressure irradiation environments, the multi-field coupling processes of hydrogen diffusion, hydride precipitation and mechanical deformation in Zircaloy cladding tubes occur. To simulate this hydrogen-induced complex behavior, a multi-field coupling method is developed, with the irradiation hardening effects and hydride-precipitation-induced expansion and hardening effects involved in the mechanical constitutive relation. The out-pile tests for a cracked cladding tube after irradiation are simulated, and the numerical results of the multi-fields at different temperatures are obtained and analyzed. The results indicate that: (1) the hydrostatic stress gradient is the fundamental factor to activate the hydrogen-induced multi-field coupling behavior excluding the temperature gradient; (2) in the local crack-tip region, hydrides will precipitate faster at the considered higher temperatures, which can be fundamentally attributed to the sensitivity of TSSP and hydrogen diffusion coefficient to temperature. The mechanism is partly explained for the enlarged velocity values of delayed hydride cracking (DHC) at high temperatures before crack arrest. This work lays a foundation for the future research on DHC.

Optimization of Peptide Production from Leg Meat of Yeonsan Ogae by High Hydrostatic Pressure and Protein Hydrolytic Enzyme and Its Characteristic Analysis (고압처리와 단백질 분해효소를 이용한 연산오계 다리육 펩타이드 생산 최적화 및 특성 분석)

  • Ha, Yoo-jin;Kim, A-Yeon;Yoo, Sun-Kyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.182-191
    • /
    • 2016
  • The purpose of this research was the optimization of protein hydrolysate production using a commercial enzyme bromelain 1200 derived from the leg of Yeonsan Ogae by response surface methodology. Yeonsan Ogae has long been known as supporting health and high efficacy treatment. In recent days, as the efficacy of functional peptides becomes more known, optimization of oligopeptide production and its characteristics from Ogae leg meat has been performed. Response surface methodology was performed for optimization of enzyme hydrolysis. The process was varied in pressure (30 to 100 MPa), time (1 to 3 h), and substrate concentration (10 to 30%). The degree of hydrolysis, amino acids, and molecular weight of products were analyzed. The optimum conditions were determined to be a pressure of 100 Mpa, time of 3 h, and substrate concentration of 20%. Under optimized conditions, degree of hydrolysis was 34.10%. The average molecular weight of protein hydrolysates was less than 1,000 Da. Major amino acids were leucine, lysine, alanine, glutamic acid, and phenylalanine.

Analysis on Patent Trends in Nonthermal Processing Technologies for Medicinal Herbs (한약재 가공 기술의 특허 동향 연구 - 비가열 가공 기술을 중심으로 -)

  • Kim, Kyoung Shin;Kim, Sung Gu;Chae, Suhn Kee;Kim, Byoung Soo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.4
    • /
    • pp.367-373
    • /
    • 2013
  • The purpose of this study was to analyze the patent application trend in the processing technology for medicinal herbs. Recently, in processing technology for medicinal herbs, experimental researches have frequently been published through papers in journals. However, the research results about the patent area were fewer than the others. We tried to analyze the patent application trend in nonthermal processing technologies for medicinal herbs by country as Korea, Japan, U.S.A. and Europe. The detailed technologies consisted of pulsed electric field, oscillatory magnetic field, intense pulsed light, ultrasonification, high hydrostatic pressure, microwave, radiation, Ohmic heating, and supercritical extraction. As a result we found that patents of nonthermal processing technologies has been growing steadily in quantity from 1980s and growing quickly since 2000s. The number of patent in Korea is larger than others as making up 70% in that whole. The number of patent in ultrasonification field was larger than others in portfolio analysis. Patent application trend in nonthermal processing technologies for ingestion occupies high share compared to other usage applications. In conclusion, patent trends of nonthermal processing technologies for medicinal herbs belong to the period in the development.

Structural Changes and Inactivation of Saccharomyces cerevisiae in Grape Juice Induced by High Hydrostatic Pressure (초고압에 의한 포도주스의 Saccharomyces cerevisiae 구조적 변화와 사멸효과)

  • Koh, Kyung-Hee
    • Journal of the Korean Home Economics Association
    • /
    • v.38 no.12
    • /
    • pp.241-248
    • /
    • 2000
  • 포도는 전세계에서 널리 소비되는 과실로 포도 과피에 존재하는 천연색소인 flavonoid는 혈중 콜레스테롤 함량 저하, 항알러지성, 항암성, 항바이러스성, 항염성의 생리적 기능이 있다고 알려져 있다. 최근에 들어와 이들 과실주스 가공에 열처리를 최소화하는 살균방법으로 자연 그대로의 영양성분, 맛과 향기 개선을 위한 초고압 처리에 관한 연구가 폭넓게 이루어지고 있다. 본 연구는 주스에서 문제가 되고 있는 ethanolic spoilage 균주인 S. cerevisiae의 초고압 살균 효과와 세포 구조적 형태를 연구하였다. 1.2$\times$$10^{6}$ cfu/ml의 S. cerevisiae를 포도주스에 접종하고 24시간 배양하여 멸균한 high barrier주머니에 20m1씩 넣고 2$0^{\circ}C$ 에서 200-600 MPa 조건으로 0-20분 동안 초고압 장치로 실시하였다. 생균수는 YM agar로 poured 방법으로 실시하였으며 200 MPa에서 5, 10, 15, 20분 후의 생균수는 각각 2.2$\times$$10^{7}$ , 4.5$\times$$10^4$, 2.8$\times$$10^4$, 9.8$\times$$10^3$, 9.5$\times$$10^3$cfu/ml로 tailing 현상을 관찰하였고, 400 MPa에서 5분 후 급격하게 감소하였다. S. cerevisiae의 사멸속도는 초고압 처리가 높을수록 증가했으며 세포 손상도는 압력과 처리시간이 길수록 증가하였다. 이들 조건에 따른 효모 세포의 구조적 관찰을 scanning electron microscopy와 electron microscopy로 하였다. S. cerevisiae 세포는 압력에 의한 pinhole, surface roughening을 발견하였고, 세포 내부의 세포질, 액포, 핵 손상과 세포질 물질들이 압력에 의하여 세포벽으로 이동하여 내부가 비어있는 현상을 관찰하였다.

  • PDF

Fault reactivation potential during $CO_2$ injection in the Gippsland Basin, Australia (호주 Gippsland Basin에서 $CO_2$ 주입 중 단층 재활성화의 가능성)

  • Ruth, Peter J. van;Nelson, Emma J.;Hillis, Richard R.
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.50-59
    • /
    • 2006
  • The risk of fault reactivation in the Gippsland Basin was calculated using the FAST (Fault Analysis Seal Technology) technique, which determines fault reactivation risk by estimating the increase in pore pressure required to cause reactivation within the present-day stress field. The stress regime in the Gippsland Basin is on the boundary between strike-slip and reverse faulting: maximum horizontal stress $({\sim}\;40.5\;Mpa/km)$ > vertical stress (21 Mpa/km) ${\sim}$ minimum horizontal stress (20 MPa/km). Pore pressure is hydrostatic above the Campanian Volcanics of the Golden Beach Subgroup. The NW-SE maximum horizontal stress orientation $(139^{\circ}N)$ determined herein is broadly consistent with previous estimates, and verifies a NW-SE maximum horizontal stress orientation in the Gippsland Basin. Fault reactivation risk in the Gippsland Basin was calculated using two fault strength scenarios; cohesionless faults $(C=0;{\mu}=0.65)$ and healed faults $(C=5.4;\;{\mu}=0.78)$. The orientations of faults with relatively high and relatively low reactivation potential are almost identical for healed and cohesionless fault strength scenarios. High-angle faults striking NE-SW are unlikely to reactivate in the current stress regime. High-angle faults oriented SSE-NNW and ENE-WSW have the highest fault reactivation risk. Additionally, low-angle faults (thrust faults) striking NE-SW have a relatively high risk of reactivation. The highest reactivation risk for optimally oriented faults corresponds to an estimated pore pressure increase (Delta-P) of 3.8 MPa $({\sim}548\;psi)$ for cohesionless faults and 15.6 MPa $({\sim}2262\;psi)$ for healed faults. The absolute values of pore pressure increase obtained from fault reactivation analysis presented in this paper are subject to large errors because of uncertainties in the geomechanical model (in situ stress and rock strength data). In particular, the maximum horizontal stress magnitude and fault strength data are poorly constrained. Therefore, fault reactivation analysis cannot be used to directly measure the maximum allowable pore pressure increase within a reservoir. We argue that fault reactivation analysis of this type can only be used for assessing the relative risk of fault reactivation and not to determine the maximum allowable pore pressure increase a fault can withstand prior to reactivation.

Monitoring the water absorption in GFRE pipes via an electrical capacitance sensors

  • Altabey, Wael A.;Noori, Mohammad
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.4
    • /
    • pp.499-513
    • /
    • 2018
  • One of the major problems in glass fiber reinforced epoxy (GFRE) composite pipes is the durability under water absorption. This condition is generally recognized to cause degradations in strength and mechanical properties. Therefore, there is a need for an intelligent system for detecting the absorption rate and computing the mass of water absorption (M%) as a function of absorption time (t). The present work represents a new non-destructive evaluation (NDE) technique for detecting the water absorption rate by evaluating the dielectric properties of glass fiber and epoxy resin composite pipes subjected to internal hydrostatic pressure at room temperature. The variation in the dielectric signatures is employed to design an electrical capacitance sensor (ECS) with high sensitivity to detect such defects. ECS consists of twelve electrodes mounted on the outer surface of the pipe. Radius-electrode ratio is defined as the ratio of inner and outer radius of pipe. A finite element (FE) simulation model is developed to measure the capacitance values and node potential distribution of ECS electrodes on the basis of water absorption rate in the pipe material as a function of absorption time. The arrangements for positioning12-electrode sensor parameters such as capacitance, capacitance change and change rate of capacitance are analyzed by ANSYS and MATLAB to plot the mass of water absorption curve against absorption time (t). An analytical model based on a Fickian diffusion model is conducted to predict the saturation level of water absorption ($M_S$) from the obtained mass of water absorption curve. The FE results are in excellent agreement with the analytical results and experimental results available in the literature, thus, validating the accuracy and reliability of the proposed expert system.

A Study on the Preparation of Durable Softening Water Repellents by Blends of Fatty Carbamide/Wax/Acrylic Copolymer(III);Water Repelling Treatment of Nylon Fabrics (지방산 카르바미드/왁스/아크릴 공중합체의 블렌드에 의한 내구유연발수제의 제조에 관한 연구(III);나일론 직물에의 발수처리)

  • Kim, Seung-Jin;Im, Wan-Bin;Ahn, Chong-Il;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.69-74
    • /
    • 1994
  • Durable softening water repellents for nylon fiber were synthesized, using two compounds: quaternized octadecyl methacrylate-2-diethylaminoethyl methacrylate copolymer as a mother resin of water repellent and quaternized fatty carbamide for improving softness and hydrostatic pressure, of which syntheses were studied in the previous papers. They were blended with waxes and emulsifiers in a variety of ratios and synthesized into water repellent PADWC, and it was nylon taffeta treated with and without textile finishing resin. The synthesized water repellents can be used either or without resin. The optimum curing temperature was 150 to 160$^{\circ}C$ and the optimum concentration was 3 to 5wt%. In the independent and conjunct treatment, the water repellency of nylon taffeta samples have no remarkable changes between initial value and that after three times washing, so these prove that the synthesized compounds are durable water repellent. The water repellency of PADWC-3 and -4 were around 90. Also, comparison of crease recovery and tear strength after repelling treatment showed that the synthesized water repellents have a very high softening effect.

Analysis of Shear Behavior and Fracture Characteristics of Plywood in Cryogenic Environment (극저온 환경 하 플라이우드의 전단 거동 및 파손 특성 분석)

  • Son, Young-Moo;Kim, Jeong-Dae;Oh, Hoon-Kyu;Kim, Yong-Tai;Park, Seong-Bo;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.394-399
    • /
    • 2019
  • Plywood is a laminated wood material where alternating layers are perpendicular to each other. It is used in a liquefied natural gas (LNG) carrier for an insulation system because it has excellent durability, a light weight, and high stiffness. An LNG cargo containment system (LNG CCS) is subjected to loads from gravity, sloshing impact, hydrostatic pressure, and thermal expansion. Shear forces are applied to an LNG CCS locally by these loads. For these reasons, the materials in an LNG CCS must have good mechanical performance. This study evaluated the shear behavior of plywood. This evaluation was conducted from room temperature ($25^{\circ}C$) to cryogenic temperature ($-163^{\circ}C$), which is the actual operating environment of an LNG storage tank. Based on the plywood used in an LNG storage tank, a shear test was conducted on specimens with thicknesses of 9 mm and 12 mm. Analyses were performed on how the temperature and thickness of the plywood affected the shear strength. Regardless of the thickness, the strength increased as the temperature decreased. The 9 mm thick plywood had greater strength than the 12 mm thick specimen, and this tendency became clearer as the temperature decreased.

Modeling and numerical simulation of electrostrictive materials and structures

  • Pechstein, Astrid;Krommer, Michael;Humer, Alexander
    • Smart Structures and Systems
    • /
    • v.30 no.3
    • /
    • pp.221-237
    • /
    • 2022
  • This paper is concerned with nonlinear modeling and efficient numerical simulation of electrostrictive materials and structures. Two types of such materials are considered: relaxor ferroelectric ceramics and electrostrictive polymers. For ceramics, a geometrically linear formulation is developed, whereas polymers are studied in a geometrically nonlinear regime. In the paper, we focus on constitutive modeling first. For the reversible constitutive response under consideration, we introduce the augmented Helmholtz free energy, which is composed of a purely elastic part, a dielectric part and an augmentation term. For the elastic part, we involve an additive decomposition of the strain tensor into an elastic strain and an electrostrictive eigenstrain, which depends on the polarization of the material. In the geometrically nonlinear case, a corresponding multiplicative decomposition of the deformation gradient tensor replaces the additive strain decomposition used in the geometrically linear formulation. For the dielectric part, we first introduce the internal energy, to which a Legendre transformation is applied to compute the free energy. The augmentation term accounts for the contribution from vacuum to the energy. In our formulation, the augmented free energy depends not only on the strain and the electric field, but also on the polarization and an internal polarization; the latter two are internal variables. With the constitutive framework established, a Finite Element implementation is briefly discussed. We use high-order elements for the discretization of the independent variables, which include also the internal variables and, in case the material is assumed incompressible, the hydrostatic pressure, which is introduced as a Lagrange multiplier. The elements are implemented in the open source code Netgen/NGSolve. Finally, example problems are solved for both, relaxor ferroelectric ceramics and electrostrictive polymers. We focus on thin plate-type structures to show the efficiency of the numerical scheme and its applicability to thin electrostrictive structures.