Browse > Article
http://dx.doi.org/10.12989/sss.2022.30.3.221

Modeling and numerical simulation of electrostrictive materials and structures  

Pechstein, Astrid (Institute of Technical Mechanics, Johannes Kepler University Linz)
Krommer, Michael (Institute of Technical Mechanics, Johannes Kepler University Linz)
Humer, Alexander (Institute of Technical Mechanics, Johannes Kepler University Linz)
Publication Information
Smart Structures and Systems / v.30, no.3, 2022 , pp. 221-237 More about this Journal
Abstract
This paper is concerned with nonlinear modeling and efficient numerical simulation of electrostrictive materials and structures. Two types of such materials are considered: relaxor ferroelectric ceramics and electrostrictive polymers. For ceramics, a geometrically linear formulation is developed, whereas polymers are studied in a geometrically nonlinear regime. In the paper, we focus on constitutive modeling first. For the reversible constitutive response under consideration, we introduce the augmented Helmholtz free energy, which is composed of a purely elastic part, a dielectric part and an augmentation term. For the elastic part, we involve an additive decomposition of the strain tensor into an elastic strain and an electrostrictive eigenstrain, which depends on the polarization of the material. In the geometrically nonlinear case, a corresponding multiplicative decomposition of the deformation gradient tensor replaces the additive strain decomposition used in the geometrically linear formulation. For the dielectric part, we first introduce the internal energy, to which a Legendre transformation is applied to compute the free energy. The augmentation term accounts for the contribution from vacuum to the energy. In our formulation, the augmented free energy depends not only on the strain and the electric field, but also on the polarization and an internal polarization; the latter two are internal variables. With the constitutive framework established, a Finite Element implementation is briefly discussed. We use high-order elements for the discretization of the independent variables, which include also the internal variables and, in case the material is assumed incompressible, the hydrostatic pressure, which is introduced as a Lagrange multiplier. The elements are implemented in the open source code Netgen/NGSolve. Finally, example problems are solved for both, relaxor ferroelectric ceramics and electrostrictive polymers. We focus on thin plate-type structures to show the efficiency of the numerical scheme and its applicability to thin electrostrictive structures.
Keywords
electrostrictive polymers; Finite Element method; geometrical and physical nonlinearity; numerical simulation; polarization saturation; relaxor ferroelectric ceramics;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Goncalves, J.F., Fonseca, J.S.O. and Silveira, O.A.A. (2016), "A controllability-based formulation for the topology optimization of smart structures", Smart Struct. Syst., Int. J., 17(5), 773-793. https://doi.org/10.12989/sss.2016.17.5.773   DOI
2 Su, J., Harrison, J., Clair, T., Bar-Cohen, Y. and Leary, S. (1999), "Electrostrictive grafr elastomers and applications", MRS Online Proceedings Library, 600, 131-136. https://doi.org/10.1557/PROC-600-131   DOI
3 Taylor, C. and Hood, P. (1973), "A numerical solution of the Navier-Stokes equations using the finite element technique", Comput. Fluids, 1(1), 73-100. https://doi.org/10.1016/0045-7930(73)90027-3   DOI
4 Toupin, R.A. (1956), "The elastic dielectric", J. Rational Mech. Anal., 5(6), 849-915.
5 Xu, B.-X., Mueller,R., Klassen, M. and Gross, D. (2010), "On electromechanical stability analysis of dielectric elastomer actuators", Appl. Phys. Lett., 97, 162908. https://doi.org/10.1063/1.3504702   DOI
6 Zah, D. and Miehe, C. (2015), "Multiplicative electro-elasticity of electroactive polymers accounting for micromechanically-based network models", Computat. Methods Appl. Mech. Eng., 286, 394-421. https://doi.org/10.1016/j.cma.2014.12.017   DOI
7 Mura, T. (1987), Micromechanics of Defects in Solids, (2nd Ed.), Springer, Netherlands.
8 Mehnert, M., Hossain, M. and Steinmann, P. (2016), "On nonlinear thermo-electro-elasticity", Proceedings of the Royal Society A, 472, 20160170-1-20160170-23.
9 Moghadam, A.A.A., Kouzani, A., Zamani, R., Magniez, K. and Kaynak, A. (2015), "Nonlinear large deformation dynamic analysis of electroactive polymer actuators", Smart Struct. Syst., Int. J., 15(6), 1601-1623. https://doi.org/10.12989/sss.2015.15.6.1601   DOI
10 Mukherjee, S. and Ganguli, R. (2010), "A dragonfly inspired apping wing actuated by electro active polymers", Smart Struct. Syst., Int. J., 6(7), 867-887. https://doi.org/10.12989/sss.2010.6.7.867   DOI
11 Pao, Y.H. (1978), "Electromagnetic forces in deformable continua", In: Nemat-Nasser S (Ed.), Mechanics Today, 4, Pergamon Press, Oxford, pp. 209-306.
12 Pechstein, A.S. (2019), "Large deformation mixed finite elements for smart structures", Mech. Adv. Mater. Struct., 27(23), 1983-1993. https://doi.org/10.1080/15376494.2018.1536932   DOI
13 Pechstein, A.S., Meindlhumer, M. and Humer, A. (2021), "Highorder mixed finite elements for an energy-based model of the polarization process in ferroelectric materials", J. Intell. Mater. Syst. Struct., 32(3), 355-368. https://doi.org/10.1177/1045389X20953895   DOI
14 Prechtl, A. (1982a), "Eine Kontinuumstheorie elastischer Dielektrika. Teil 1: Grundgleichungen und allgemeine Materialbeziehungen", Archiv fur Elektrotechnik, 65(3), 167-177.   DOI
15 Skatulla, S., Sansour, C. and Arockiarajan, A. (2012), "A multiplicative approach for nonlinear electro-elasticity", Comput. Methods Appl. Mech. Eng., 245-246, 243-255. https://doi.org/10.1016/j.cma.2012.07.002   DOI
16 Suo, Z. (2010), "Theory of dielectric elastomers", Acta Mechanica Solida Sinica, 23(6), 549-578. https://doi.org/10.1016/S0894-9166(11)60004-9   DOI
17 Bonet, J. and Wood, R.D. (2008), Nonlinear Continuum Mechanics for Finite Element Analysis, (2nd Ed.), Cambridge University Press, Cambridge, UK.
18 Vetyukov, Y., Staudigl, E. and Krommer, M. (2018), "Hybrid asymptotic-direct approach to finite deformations of electromechanically coupled piezoelectric shells", Acta Mechanica, 229(2), 953-974. https://doi.org/10.1007/s00707-017-2046-6   DOI
19 Vu, D.K., Steinmann, P. and Possart, G. (2007), "Numerical modelling of non-linear electroelasticity", Int. J. Numer. Methods Eng., 70, 685-704. https://doi.org/10.1002/nme.1902   DOI
20 Ask, A., Menzel, A. and Ristinmaa, M. (2012), "Phenomenological modeling of viscous electrostrictive polymers", Int. J. Non-Linear Mech., 47, 156-165. https://doi.org/10.1016/j.ijnonlinmec.2011.03.020   DOI
21 Diaconu, I., Dorohoi, D.O. and Ciobanu, C. (2008), "Electromechanical response of polyurethane films with different thickness", Roman. J. Phys., 53(1-2), 91-97.
22 Gao, Z., Tuncer, A. and Cuitino, A.M. (2011), "Modeling and simulation of the coupled mechanical-electrical response of soft solids", Int. J. Plasticity, 27(10), 1459-1470. https://doi.org/10.1016/j.ijplas.2010.07.006   DOI
23 Hansy-Staudigl, E., Krommer, M. and Humer, A. (2019), "A complete direct approach to nonlinear modeling of dielectric elastomer plates", Acta Mechanica, 230, 3923-3943. https://doi.org/10.1007/s00707-019-02529-1   DOI
24 Humer, A., Pechstein, A.S., Meindlhumer, M. and Krommer, M. (2020), "Nonlinear electromechanical coupling in ferroelectric materials: large deformation and hysteresis", Acta Mechanica, 231, 2521-2544. https://doi.org/10.1007/s00707-020-02657-z   DOI
25 Klinkel, S. (2006), "A phenomenological constitutive model for ferroelastic and ferroelectric hysteresis effects in ferroelectric ceramics", Int. J. Solids Struct., 43(22-23), 7197-7222. https://doi.org/10.1016/j.ijsolstr.2006.03.008   DOI
26 Klinkel, S., Zwecker, S. and Mueller, R. (2013), "A solid shell finite element formulation for dielectric elastomers", J. Appl. Mech., 80, 021026-1-021026-11. https://doi.org/10.1115/1.4007435   DOI
27 Lubarda, V.A. (2004), "Constitutive theories based on the multiplicative decomposition of deformation gradient: Thermoelasticity, elastoplasticity, and biomechanics", Appl. Mech. Rev., 57(4), 95-108. https://doi.org/10.1115/1.1591000   DOI
28 Maugin, G.A. (1988), Continuum Mechanics of Electromagnetic Solids, North-Holland, Amsterdam, The Netherlands.
29 McMeeking, R.M. and Landis, C.M. (2005), "Electrostatic forces and stored energy for deformable dielectric materials", J. Appl. Mech., 72(4), 581-590. https://doi.org/10.1115/1.1940661   DOI
30 Yang, L., Li, X., Allahyarov, E., Taylor, P.L., Zhang, Q.M. and Zhu, L. (2013), "Novel polymer ferroelectric behavior via crystal isomorphism and the nanoconfinement effect", Polymer, 54, 1709-1728. https://doi.org/10.1016/j.polymer.2013.01.035   DOI
31 Hansy-Staudigl, E. and Krommer, M. (2021), "Electrostrictive polymer plates as electro-elastic material surfaces: Modeling, analysis, and simulation", J. Intell. Mater. Syst. Struct., 32(3), 296-316. https://doi.org/10.1177/1045389X20935640   DOI
32 Amini, A., Mohammadimehr, M. and Faraji, A. (2020), "Optimal placement of piezoelectric actuator/senor patches pair in sandwich plate by improved genetic algorithm", Smart Struct. Syst., Int. J., 26(6), 721-733. https://doi.org/10.12989/sss.2020.26.6.721   DOI
33 Bar-Cohen, Y. (2004), Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges, SPIE Press, Bellingham, WA, USA.
34 Bonet, J. (2001), "Large strain viscoelastic constitutive models", Int. J. Solids Struct., 38, 2953-2968. https://doi.org/10.1016/S0020-7683(00)00215-8   DOI
35 Hom, C.L. and Shankar, N. (1994), "A fully coupled constitutive model for electrostrictive ceramic materials", J. Intell. Mater. Syst. Struct., 5, 795-801. https://doi.org/10.1177/1045389X9400500610   DOI
36 Humer, A. and Krommer, M. (2015), "Modeling of piezoelectric materials by means of a multiplicative decomposition of the deformation gradient", Mech. Adv. Mater. Struct., 22, 125-135. https://doi.org/10.1080/15376494.2014.907948   DOI
37 Kamlah, M. (2001), "Ferroelectric and ferroelastic piezoceramics - modeling of electromechanical hysteresis phenomena", Continuum Mech. Thermodyn., 13, 219-268.   DOI
38 Prechtl, A. (1982b), "Eine Kontinuumstheorie elastischer Dielektrika. Teil 2: Elektroelastische und elastooptische Erscheinungen", Archiv fur Elektrotechnik, 65(4), 185-194.   DOI
39 Pelrine, R.E., Kornbluh, R.D. and Joseph, J.P. (1998), "Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation", Sensors and Actuators A: Physical, 64, 77-85.   DOI
40 Katsouras, I., Asadi, K., Li, M., Van Driel, T.B., Kjaer, K.S., Zhao, D., Lenz, T., Gu, Y., Blom, P.W., Damjanovic, D. and Nielsen, M.M. (2016), "The negative piezoelectric effect of the ferroelectric polymer poly(vinylidene uoride)", Nature Mater., 15, 78-84. https://doi.org/10.1038/nmat4423   DOI
41 Reissner, H. (1931), "Eigenspannungen und Eigenspannungsquellen", Zeitschrift fur Angewandte Mathematik und Mechanik, 11(1), 59-70.   DOI
42 Staudigl, E., Krommer, M. and Vetyukov, Y. (2018), "Finite deformations of thin plates made of dielectric elastomers: Modeling, numerics, and stability", J. Intell. Mater. Syst. Struct., 29(17), 3495-3513. https://doi.org/10.1177/1045389X17733052   DOI
43 Bustamante, R. (2009), "A variational formulation for a boundary value problem considering an electro-sensitive elastomer interacting with two bodies", Mech. Res. Commun., 36, 791-795. https://doi.org/10.1016/j.mechrescom.2009.05.009   DOI
44 Cao, Y., Zandi, Y., Gholizadeh, M., Fu, L., Du, J., Qian, X., Wang, Z., Roco-Videla, A., Selmi, A. and Issakhov, A. (2021), "Optimization algorithms for composite beam as smart active control of structures using genetic algorithms", Smart Struct. Syst., Int. J., 27(6), 1041-1052. https://doi.org/10.12989/sss.2021.27.6.1041   DOI
45 Dorfmann, A. and Ogden, R.W. (2005), "Nonlinear electroelasticity", Acta Mechanica, 174, 167-183. https://doi.org/10.1007/s00707-004-0202-2   DOI
46 Eringen, A.C. and Maugin, G.A. (1990), Electrodynamics of Continua I: Foundations and Solid Media, Springer, New York, NY, USA.