Browse > Article
http://dx.doi.org/10.1016/j.net.2018.09.014

Three-dimensional numerical simulation of hydrogen-induced multi-field coupling behavior in cracked zircaloy cladding tubes  

Xia, Zhongjia (Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University)
Wang, Bingzhong (Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University)
Zhang, Jingyu (Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University)
Ding, Shurong (Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University)
Chen, Liang (Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institution of China)
Pang, Hua (Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institution of China)
Song, Xiaoming (Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institution of China)
Publication Information
Nuclear Engineering and Technology / v.51, no.1, 2019 , pp. 238-248 More about this Journal
Abstract
In the high-temperature and high-pressure irradiation environments, the multi-field coupling processes of hydrogen diffusion, hydride precipitation and mechanical deformation in Zircaloy cladding tubes occur. To simulate this hydrogen-induced complex behavior, a multi-field coupling method is developed, with the irradiation hardening effects and hydride-precipitation-induced expansion and hardening effects involved in the mechanical constitutive relation. The out-pile tests for a cracked cladding tube after irradiation are simulated, and the numerical results of the multi-fields at different temperatures are obtained and analyzed. The results indicate that: (1) the hydrostatic stress gradient is the fundamental factor to activate the hydrogen-induced multi-field coupling behavior excluding the temperature gradient; (2) in the local crack-tip region, hydrides will precipitate faster at the considered higher temperatures, which can be fundamentally attributed to the sensitivity of TSSP and hydrogen diffusion coefficient to temperature. The mechanism is partly explained for the enlarged velocity values of delayed hydride cracking (DHC) at high temperatures before crack arrest. This work lays a foundation for the future research on DHC.
Keywords
Numerical simulation; Multi-field coupling; DHC; Irradiation effects; Hydride-precipitation-induced effects;
Citations & Related Records
연도 인용수 순위
  • Reference
1 X.H. Guo, S.Q. Shi, Q.M. Zhang, et al., An elastoplastic phase-field model for the evolution of hydride precipitation in zirconium. Part II: specimen with flaws, J. Nucl. Mater. 378 (1) (2008) 120-125.   DOI
2 X. Gong, Y. Zhao, S. Ding, A new method to simulate the micro-thermomechanical behaviors evolution in dispersion nuclear fuel elements, Mech. Mater. 77 (2014) 14-27.   DOI
3 M.P. Puls, The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components: Delayed Hydride Cracking, Springer Science & Business Media, 2012.
4 Jingyu Zhang, et al., A theoretical model for delayed hydride cracking velocity considering the temperature history and temperature gradients, Nucl. Mater. Energy 16 (2018) 95-107.   DOI
5 K.S. Chan, A micromechanical model for predicting hydride embrittlement in nuclear fuel cladding material, J. Nucl. Mater. 227 (3) (1996) 220-236.   DOI
6 K. Une, S. Ishimoto, Y. Etoh, et al., The terminal solid solubility of hydrogen in irradiated Zircaloy-2 and microscopic modeling of hydride behavior, J. Nucl. Mater. 389 (1) (2009) 127-136.   DOI
7 A.T. Motta, L.Q. Chen, Hydride formation in zirconium alloys, JOM (J. Occup. Med.) 64 (12) (2012) 1403-1408.
8 J.A. Szpunar, W. Qin, H. Li, et al., Roles of texture in controlling oxidation, hydrogen ingress and hydride formation in Zr alloys, J. Nucl. Mater. 427 (1) (2012) 343-349.   DOI
9 C. Sun, J. Tan, et al., Critical temperature of delayed hydride cracking in N-18 Zircaloy, Acta Metall. Sin. 45 (5) (2009) 541-546.   DOI
10 W.J. Zhao, Development of new nuclear cladding in French PWR, Nucl. Power Eng. 21 (3) (2000) 278-284.   DOI
11 Y. Gou, Y. Li, Y. Liu, et al., Evaluation of a delayed hydride cracking in Zr-2.5 Nb CANDU and RBMK pressure tubes, Mater. Des. 30 (4) (2009) 1231-1235.   DOI
12 M.D. Pandey, M. Wang, G.A. Bickel, A probabilistic approach to update lower bound threshold stress intensity factor (K IH) for delayed hydride cracking, Nucl. Eng. Des. 240 (10) (2010) 2682-2690.   DOI
13 A. Zielinski, S. Sobieszczyk, Hydrogen-enhanced degradation and oxide effects in zirconium alloys for nuclear applications, Int. J. Hydrogen Energy 36 (14) (2011) 8619-8629.   DOI
14 A.M. Garde, G.P. Smith, R.C. Pirek, Effects of Hydride Precipitate Localization and Neutron Fluence on the Ductility of Irradiated Zircaloy-4//Zirconium in the Nuclear Industry: Eleventh International Symposium, ASTM International, 1996.
15 M.D. Pandey, D.D. Radford, A statistical approach to the prediction of pressure tube fracture toughness, Nucl. Eng. Des. 238 (12) (2008) 3218-3226.   DOI
16 J.I. Mieza, G.L. Vigna, G. Domizzi, Evaluation of variables affecting crack propagation by Delayed Hydride Cracking in Zr-2.5 Nb with different heat treatments, J. Nucl. Mater. 411 (1) (2011) 150-159.   DOI
17 L.O. Jernkvist, Multi-field modelling of hydride forming metals Part I: model formation and validation, Comput. Mater. Sci. 85 (2014) 383-401.   DOI
18 N. Hashimoto, T.S. Byun, K. Farrell, et al., Deformation microstructure of neutron-irradiated pure polycrystalline metals, J. Nucl. Mater. 329 (2004) 947-952.   DOI
19 E.R. Bradley, G.P. Sabol, Zirconium in the Nuclear Industry: Eleventh International Symposium, ASTM, 1996.
20 F. Yunchang, D.A. Koss, The influence of multiaxial states of stress on the hydrogen embrittlement of zirconium alloy sheet, Metall. Trans. A 16 (4) (1985) 675-681.   DOI
21 J.H. Huang, S.P. Huang, Effect of hydrogen contents on the mechanical properties of Zircaloy-4, J. Nucl. Mater. 208 (1) (1994) 166-179.   DOI
22 G.P. Marino, HYDIZ, A 2-dimensonal computer program for migration of interstitial solutes of finite solubility in a thermal gradient (LWBR Development Program), Bettis Atomic Power Lab., Pittsburgh, PA (USA), 1974.
23 J. Freund, A Model for Thermal Diffusion of Hydrogen in Zirconium Alloys, Helsinki University of Technology, 1992.
24 A.G. Varias, A.R. Massih, Hydride-induced embrittlement and fracture in metalsdeffect of stress and temperature distribution, J. Mech. Phys. Solid. 50 (7) (2002) 1469-1510.   DOI
25 P. Sofronis, R.M. McMeeking, Numerical analysis of hydrogen transport near a blunting crack tip, J. Mech. Phys. Solid. 37 (3) (1989) 317-350.   DOI
26 L.J. Siefken, E.W. Coryell, E.A. Harvego, et al., MATPRO-A Library of Materials Properties for Light-water-reactor Accident Analysis. Idaho Falls, Idaho National Engineering and Environmental Laboratory, 2001.
27 D.R. Metzger, R.G. Sauve, A Self-induced Stress Model for Simulating Hydride Formation at Flaws, American Society of Mechanical Engineers, New York, NY (United States), 1996.
28 J. Lufrano, P. Sofronis, Micromechanics of hydride formation and cracking in zirconium alloys, Comput. Model. Eng. Sci. 1 (2) (2000) 119-131.
29 J. Lufrano, P. Sofronis, H.K. Birnbaum, Elastoplastically accommodated hydride formation and embrittlement, J. Mech. Phys. Solid. 46 (9) (1998) 1497-1520.   DOI
30 J. Lufrano, P. Sofronis, H.K. Birnbaum, Modeling of hydrogen transport and elastically accommodated hydride formation near a crack tip, J. Mech. Phys. Solid. 44 (2) (1996) 179-205.   DOI
31 A.G. Varias, A.R. Massih, Simulation of hydrogen embrittlement in zirconium alloys under stress and temperature gradients, J. Nucl. Mater. 279 (2) (2000) 273-285.   DOI
32 A.G. Varias, J.L. Feng, Simulation of hydride-induced steady-state crack growth in metals-Part I: growth near hydrogen chemical equilibrium, Comput. Mech. 34 (5) (2004) 339-356.   DOI
33 X.Q. Ma, S.Q. Shi, C.H. Woo, et al., The phase field model for hydrogen diffusion and ${\gamma}$-hydride precipitation in zirconium under non-uniformly applied stress, Mech. Mater. 38 (1) (2006) 3-10.   DOI
34 M.P. Puls, The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components: Delayed Hydride Cracking, Springer Science & Business Media, 2012.
35 X.H. Guo, S.Q. Shi, Q.M. Zhang, et al., An elastoplastic phase-field model for the evolution of hydride precipitation in zirconium. Part I: smooth specimen, J. Nucl. Mater. 378 (1) (2008) 110-119.   DOI
36 P. Shewmon, Diffusion in Solids. The Minerals, Metals & Materials Society, Diffusion in Solids, second ed., Retroactive Coverage, United States), 1989, p. 246, 1989.
37 C.E. Coleman, D. Hardie, The hydrogen embrittlement of ${\alpha}$-zirconium-a review, J. Less Common Met. 11 (3) (1966) 168-185.   DOI
38 L.O. Jernkvist, A.R. Massih, Multi-field modelling of hydride forming metals. Part I: model formulation and validation, Comput. Mater. Sci. 85 (2014) 363-382.   DOI
39 C.E. Coleman, Cracking of hydride-forming metals and alloys, in: Comprehensive Structural Integrity, 6, 2003, pp. 103-161.
40 C.K. Chao, K.C. Yang, C.C. Tseng, Rupture of spent fuel Zircaloy cladding in dry storage due to delayed hydride cracking, Nucl. Eng. Des. 238 (1) (2008) 124-129.   DOI
41 C.L. Briant, Z.F. Wang, N. Chollocoop, Hydrogen embrittlement of commercial purity titanium, Corrosion Sci. 44 (8) (2002) 1875-1888.   DOI
42 A.G. Varias, J.L. Feng, Simulation of hydride-induced steady-state crack growth in metalsePart I: growth near hydrogen chemical equilibrium, Comput. Mech. 34 (5) (2004) 339-356.   DOI
43 S.Q. Shi, M.P. Puls, Dependence of the threshold stress intensity factor on hydrogen concentration during delayed hydride cracking in zirconium alloys, J. Nucl. Mater. 218 (1) (1995) 30-36.   DOI
44 E. Smith, Threshold stress criterion for delayed hydride crack initiation at a blunt notch in zirconium alloys, Int. J. Pres. Ves. Pip. 68 (1) (1996) 53-61.   DOI