Fault reactivation potential during $CO_2$ injection in the Gippsland Basin, Australia

호주 Gippsland Basin에서 $CO_2$ 주입 중 단층 재활성화의 가능성

  • Ruth, Peter J. van (Cooperative Research Centre for Greenhouse Gas Technologies Australian School of Petroleum) ;
  • Nelson, Emma J. (The University of Adelaide North Terrace Campus) ;
  • Hillis, Richard R. (Cooperative Research Centre for Greenhouse Gas Technologies Australian School of Petroleum)
  • Published : 2006.02.28

Abstract

The risk of fault reactivation in the Gippsland Basin was calculated using the FAST (Fault Analysis Seal Technology) technique, which determines fault reactivation risk by estimating the increase in pore pressure required to cause reactivation within the present-day stress field. The stress regime in the Gippsland Basin is on the boundary between strike-slip and reverse faulting: maximum horizontal stress $({\sim}\;40.5\;Mpa/km)$ > vertical stress (21 Mpa/km) ${\sim}$ minimum horizontal stress (20 MPa/km). Pore pressure is hydrostatic above the Campanian Volcanics of the Golden Beach Subgroup. The NW-SE maximum horizontal stress orientation $(139^{\circ}N)$ determined herein is broadly consistent with previous estimates, and verifies a NW-SE maximum horizontal stress orientation in the Gippsland Basin. Fault reactivation risk in the Gippsland Basin was calculated using two fault strength scenarios; cohesionless faults $(C=0;{\mu}=0.65)$ and healed faults $(C=5.4;\;{\mu}=0.78)$. The orientations of faults with relatively high and relatively low reactivation potential are almost identical for healed and cohesionless fault strength scenarios. High-angle faults striking NE-SW are unlikely to reactivate in the current stress regime. High-angle faults oriented SSE-NNW and ENE-WSW have the highest fault reactivation risk. Additionally, low-angle faults (thrust faults) striking NE-SW have a relatively high risk of reactivation. The highest reactivation risk for optimally oriented faults corresponds to an estimated pore pressure increase (Delta-P) of 3.8 MPa $({\sim}548\;psi)$ for cohesionless faults and 15.6 MPa $({\sim}2262\;psi)$ for healed faults. The absolute values of pore pressure increase obtained from fault reactivation analysis presented in this paper are subject to large errors because of uncertainties in the geomechanical model (in situ stress and rock strength data). In particular, the maximum horizontal stress magnitude and fault strength data are poorly constrained. Therefore, fault reactivation analysis cannot be used to directly measure the maximum allowable pore pressure increase within a reservoir. We argue that fault reactivation analysis of this type can only be used for assessing the relative risk of fault reactivation and not to determine the maximum allowable pore pressure increase a fault can withstand prior to reactivation.

현재의 응력장내에서 단층 재활성화를 야기하는데 필요한 공극압의 증가를 추정함으로써 재활성화 위험도를 결정하는 FAST(단층 분석 확인 기술)를 이용해 Gippsland Basin의 단층 재환성의 위험도가 계산되었다. Gippsland Basin의 응력 형태는 주향이동단층과 역단층의 경계부근으로서 즉, 최대 수평 압력$({\sim}40.5\;MPa/km)$ > 수직 압력(21 MPa/km) ${\sim}$ 최소 수평 압력(200 MPa/km)이다. 공극압은 Golden Beach Subgroup의 Campanian volcanics 상부에서 정수압이다. 여기에서 결정된 NW-SE 최대 수평 응력 방향$(139^{\circ}N)$은 이전의 측정값들과 대체로 일치하고 Gippsland Basin에서의 NW-SE 최대 수평 응력 방향을 입증한다. Gippsland Basin의 단층 재활성화 위험도는, cohesionless fault$(C=0;\;{\mu}=0.65)$와 healed fault$(C=5.4;\;{\mu}=0.78)$, 두 가지 단층 강도 시나리오를 이용해서 계산되었다. 상대적으로 높고 낮은 재활성화 가능성을 가진 단층들의 방향은 cohesionless fault 와 healed fault 모두에 대해 거의 동일하다. NE-SW 주향방향의 큰 각을 가진 단층들은 현재의 응력상태하에서는 재활성화 가능성이 거의 없다. SSE-NNW 과 ENE-WSW 방향의 큰 각을 가진 단층들이 단층 재활성화 위험도가 가장 높다. 부가적으로 NE-SW 주향 방향의 작은 각을 가진 단층(thrust 단층)은 상대적으로 높은 재활성화 위험도를 가지고 있다. 최적 방향 단층들에 대한 가장 높은 재활성화 위험도는 cohesionless fault에 대해서는 추정 공극압의 3.8MPa$({\sim}548psi)$ 증가(Delta P), healed fault에 대해서는 15.6MPa 증가에 해당된다. 이 논문에서 제시된 단층 재활성화 분석으로부터 얻은 공극압 증가의 절대값은 지구역학적인 모델(원위치 응력과 암석 강도 자료)에서의 불확실성으로 인해 큰 오차를 수반한다. 특히, 최대 수평 응력 강도와 단층 강도 자료는 좁은 범위에 한정되어 있지 않다. 그러므로 단풍 재활성화 분석은 저류층 내에서 최대로 허용할 수 있는 공극압 증가를 직접 측정하는데 사용될 수 없다. 이러한 종류의 단층 재활성화 분석은 단지 단층 재활성화의 상대적인 위험도의 평가에 사용될 수 있을 뿐이고, 재활성화에 앞서 단층이 견딜 수 있는 공극압 증가의 최대 허용치를 결정하는데는 사용할 수 없다고 주장하고자 한다.

Keywords

References

  1. Aadnoy, B.S., 1990, Inversion technique to determine the in situ stress field from fracturing data: Journal of Petroleum Science and Engineering, 4, 127-141 https://doi.org/10.1016/0920-4105(90)90021-T
  2. Barton, CA., Zoback, M.D., and Moos, D., 1995, Fluid flow along potentially active faults in crystalline rock: Geology, 23, 683-686 https://doi.org/10.1130/0091-7613(1995)023<0683:FFAPAF>2.3.CO;2
  3. Barton, C, Hickman, S., Morin, R, Zoback, M. and D. Benoit, 1998, Reservoir-scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field: SPE/lSRM 47371
  4. Bernecker, T. and Partridge, A.D., 2001, Emperor and Golden Beach Subgroups: the onset of Late Cretaceous sedimentation in the Gippsland Basin, SE Australia. In: Hill, K.C, and Bernecker, T. (eds), Eastern Australasian Basins Symposium: a refocused energy perspective for the future: Petroleum Exploration Society of Australia, 391-402
  5. Brudy, M., and Kjorholt, H., 2001, Stress orientation on the Norwegian continental shelf derived from borehole failures observed in high-resolution borehole imaging logs: Tectonophysics, 337, 65-84 https://doi.org/10.1016/S0040-1951(00)00299-7
  6. Brudy, M., and Zoback, M.D.,1993, Compressive and tensile failure of boreholes arbitrarily inclined to principal stress axes: Application to the KTB boreholes, Germany: International Journal of Rock Mechanics and Mining Science, 30, 1035-1038 https://doi.org/10.1016/0148-9062(93)90068-O
  7. Byerlee, J.D., 1978, Friction of Rocks, Pure and Applied Geophysics, 116,615-626 https://doi.org/10.1007/BF00876528
  8. Dewhurst, D.N., and Jones, RM., 2002, Geomechanical, microstructural and petrophysical evolution in experimentally re-activated cataclasites: application to fault seal prediction: AAPG Bulletin, 86, 1383-1405
  9. Dewhurst, D.N., Jones RM., Hillis, R.R, and Mildren, S.D., 2002, Microstructural and Geomechanical Characterisation of Fault Rocks from the Carnarvon and Otway Basins: APPEA Journal, 42, 167-186 https://doi.org/10.1071/AJ01010
  10. Engelder, T., 1993, Stress Regimes in the Lithosphere: Princeton University Press, 457pp
  11. Gibson-Poole, C.M., Svendsen, L., Underschultz, J., Watson, M.N., Ennis-King, J., van Ruth, P., Nelson, E., Daniel, RE, and Cinar, Y, 2006, Gippsland Basin Geosequestration, Potential Solution for the Latrobe Valley Brown Coal $CO_2$, emissions: APPEA Journal, 46, (in press)
  12. Handin, J., Hager, R.V.Jr., Friedman, M., and Feather, J.N., 1963, Experimental deformation of sedimentary rocks under confining pressure: pore pressure tests: AAPG Bulletin, 47, 718-755
  13. Hillis, R.R., Meyer, U., and Reynolds, S.D., 1998, The Australian stress map: Exploration Geophysics, 29, 420--427 https://doi.org/10.1071/EG998420
  14. Hillis, R.R., Monte, SA., Tan, c.r, and Willoughby, D.R., 1995, The contemporary stress field of the Otway Basin, South Australia: Implications for hydrocarbon exploration and production: APEA Journal, 494-506
  15. Mildren, S.D., Hillis, R.R., and Kaldi, J., 2002, Calibrating predictions of fault seal reactivation in the Timor Sea: APPEA Journal, 42, 187-202 https://doi.org/10.1071/AJ01011
  16. Nelson, E.J., Meyer, U., Hillis R.R., and Mildren, S.D., 2005, Transverse drillinginduced tensile fractures in the West Tuna area, Gippsland Basin, Australia: implications for the in situ stress regime: International Journal of Rock Mechanics and Mining Sciences, 42, 361-371 https://doi.org/10.1016/j.ijrmms.2004.12.001
  17. Nelson, E.J., and Hillis, R.R, 2005, In Situ stresses of the West Tuna area, Gippsland Basin: Australian Journal of Earth Sciences, 52, 299-313 https://doi.org/10.1080/08120090500139430
  18. Power, M.R, Hill, KC., Hoffman, N., Bernecker, T., and Norvick, M., 2001, The structural and tectonic evolution of the Gippsland Basin: results from 20 section balancing and 3D structural modelling: in Hill, KC., and Bernecker, T. (eds), Eastern Australasian Basins Symposium: a refocused energy perspective for the future: Petroleum Exploration Society of Australia, 373-384
  19. Root, R.S., Gibson-Poole, C.M., Lang, S.c., Streit, J.E., Underschultz, J.R., and Ennis-King, J., 2004, Opportunities for geological storage of carbon dioxide in the offshore Gippsland Basin, SE Australia: an example from the upper Latrobe Group: in Boult, P.J., Johns, D.R., and Lang, S.c., (eds), Eastern Australasian Basins Symposium II, Special Publication: Petroleum Exploration Society of Australia, 367-388
  20. Santarelli, F.J., Tronvoll, J., Svennekjaer, M., Ske1e, H., Henriksen, R, and Bratli, R.K, 1998, Reservoir stress path: the depletion and the rebound. SPE/ISRM Eurock 98 Conference. Trondheim, Norway. 2, 203-209. SPE 47350
  21. Shimamoto, T., and Logan, J.M., 1981, Effects of simulated clay gouge on the sliding behaviour of Tennessee sandstone: Tectonophysics, 75, 243-255 https://doi.org/10.1016/0040-1951(81)90276-6
  22. Sibson, RH., 1974, Frictional constraints on thrust, wrench and normal faults: Nature, 249, 542 - 544 https://doi.org/10.1038/249542a0
  23. Sibson, R.H., 1996, Structural permeability of fluid-driven fault-fracture meshes: Journal of Structural Geology, 18,1031-1042 https://doi.org/10.1016/0191-8141(96)00032-6
  24. Streit, J.E., and Hillis, R.R., 2004, Estimating fault stability and sustainable fluid pressures for underground storage of $CO_2$in porous rock: Energy, 29, 1445-1456 https://doi.org/10.1016/j.energy.2004.03.078
  25. Tuefel, i.w. Rhett, D.W., and Farrell, H.E., 1991, Effect of reservoir depletion and pore pressure drawdown on in situ stress and rock deformation in the Ekofisk Field, North Sea: in Roegiers, J.c. (ed.), Rock Mechanics as a Multidisciplinary Science, Balkema, 63-72
  26. Wiprut, D., and Zoback, M.D., 2000, Fault reactivation and fluid flow along a previously dormant normal fault in the northern North Sea: Geology, 28, 595-598 https://doi.org/10.1130/0091-7613(2000)28<595:FRAFFA>2.0.CO;2