• Title/Summary/Keyword: High frequency ultrasound transducer

Search Result 28, Processing Time 0.028 seconds

A Study on Efficient Frequency Control of Transducer for Skin Treatment Using Multi-Frequency Ultrasound (멀티주파수 초음파를 사용하는 피부 치료기기 트랜스듀서의 효율적인 주파수 제어 연구)

  • Park, Jong-Cheol;Kim, Min-Sung
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1038-1048
    • /
    • 2022
  • Ultrasound is one of the effective methods for skin treatment. The skin penetration depth of the ultrasound depends on the ultrasonic frequency, that is, when the ultrasonic frequency is high, the depth is shallow. We have developed a transducer which can generate effectively 3 different ultrasonic frequencies removing interference between 3 types of frequencies according to impedance matching technology. The generated powers of transducer are 40.67W at 3.MHz, 17.46W at 11.7 MHz, and 14.79W at 21.5 MHz. The signal interference between the three frequencies is designed so that they do not interfere with each other by separating the signals using the SPDT (Single Pole, Double Throw) switch. The developed hybrid ultrasound transducer can be applied in skin care or skin treatment and beauty therapy.

Experimental Study for Defects Inspection of CFRP Using Laser-Generated Ultrasound

  • Lee, Joon-Hyun;Park, Won-Su;Byun, Joon-Hyung
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.41-45
    • /
    • 2006
  • The fabrication process of fiber placement system of carbon fiber reinforced plastic (CFRP) requires real time process control and reliable inspection to ensure quality by preventing defects such as delamination and void. Therefore, novel non-contact inspection technique is required during the non-destructive evaluation in a fiber placement system. For the inspection of delamination in CFRP, various methods to receive laser-generated ultrasound were applied by using piezoelectric transducer, air-coupled transducer, wavelet transform and scanning laser ultrasonic technique. Laser-generated ultrasound was received with a conventional piezoelectric sensor in contacting manner. Then signal characteristics due to defects were analyzed to find a factor for detecting defects. Air-coupled transducer was used for reception of laser-generated guided wave using linear slit array in order to generate high frequency guided wave. And line scan technique was used to confirm the capability of on-line application. The high frequency component of laser-generated guided wave received with piezoelectric sensor disappeared after propagating through delamination region. Nevertheless, it was failed to receive high frequency guided wave in using air-coupled transducer. The first peak of the frequency spectrum under 100kHz in the delamination region is higher than in the sound region. By using this feature, the line scanned frequency data were acquired in fully non-contact generation and reception of ultrasound. This method was proved as useful technique for detecting delamination in CFRP.

  • PDF

High Frequency Ultrasound and Its Applications to Animal and Human Imaging Focusing on Vessel and Blood (고주파 초음파의 그 응용: 혈관과 혈액을 중심으로한 동물과 인체 영상)

  • Bok, Tae-Hoon;Paeng, Dong-Guk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.2E
    • /
    • pp.73-85
    • /
    • 2010
  • In the diagnostic ultrasound (US) transducer technology, the high frequency US(HFUS) transducer over 20 MHz is one of the current issues to be pursued for better resolution with the expense of penetration. HFUS single element transducers and the mechanical scanning systems for imaging are reviewed, and HFUS array transducers are also briefly summarized. HFUS applications such as the human applications in ophthalmology and dermatology and small animal applications for research purposes are reviewed with vascular and blood imaging in this paper.

A Study on the Development of High-Intensity Focused Ultrasound Skin Treatment System Through Frequency Output Control Optimization (주파수 출력 제어 최적화를 통한 고강도 집속 초음파 피부치료 시스템 개발 연구)

  • Park, Jong-Cheol;Kim, Min-Sung
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1022-1037
    • /
    • 2022
  • It is important to develop a transducer that generates uniform output power through frequency control of the HIFU at 4 MHz frequency for the high intensity focused ultrasound (HIFU) skin diseases treatment. In this paper, a 4 MHz frequency band HIFU system for skin disease treatment was designed, manufactured and developed. In HIFU, even for the ultrasonic vibrator in the 4 MHz frequency band, the characteristics of the output power of the HIFU are different depending on the difference in the thickness of the PZT material. Through the development of a system amplifier, the sound output of the HIFU transducer was improved to more than 48 W and uniform output power control was possible. And, it is possible to control the output power even in a frequency band of 4.0 to 4.7 MHz, which is wider than 4.0 MHz, and shows the resonance frequency of the transducer. The maximum output power for each frequency was 49.969 W and the minimum value was 48.018 W. The maximum output power compared to the minimum output power is 49.969 W, which is uniform within 4.1%. It was confirmed that the output power of the HIFU through the amplifier can be uniformly controlled in the 4 MHz frequency band.

Optimal design of a concave annular array transducer to generate high intensity focused ultrasound (고강도 집속 초음파 발생용 오목한 환상형 배열 트랜스듀서의 최적설계)

  • Choi, Euna;Roh, Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.6
    • /
    • pp.452-465
    • /
    • 2016
  • In this study, the structure of a concave annular array transducer was optimized to generate high intensity focused ultrasound for medical therapeutic application. The transducer has a phased array structure composed of several concentric channels that have 40 mm as the radius of curvature. We derived theoretical equations to analyze the sound field of the transducer and verified the validity of the equations by comparing the results calculated by the equations with those from finite element analyses. We also checked the possibility of dynamic focusing at around the geometric focal point. Further, the level of a grating lobe occurring at an unwanted position in the transducer sound field was confirmed to be reducible through the relation between the number of channels and the frequency of the transducer. Hence, the structure of the transducer was optimized to place the main lobe within a specific range from the zenith while systematically reducing the level of the maximum sidelobe including the grating lobe. The designed structure showed the performance better than that targeted at all the focal points.

High-intensity focused ultrasound beam path visualization using ultrasound imaging (초음파 영상을 이용한 고강도 집중 초음파 빔 시각화)

  • Song, Jae Hee;Chang, Jin Ho;Yoo, Yang Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.1
    • /
    • pp.16-23
    • /
    • 2020
  • In High-Intensity Focused Ultrasound (HIFU) treatment, effective localization of HIFU focus is important for developing a safe treatment plan. While Magnetic Resonance Imaging guided HIFU (MRIgHIFU) can visualize the ultrasound path during the treatment for localizing HIFU focus, it is challenging in ultrasound imaging guided HIFU (USIgHIFU). In the present study, a real-time ultrasound beam visualization technique capable of localizing HIFU focus is presented for USIgHIFU. In the proposed method, a short pulse, with the same center frequency of an imaging ultrasound transducer below the regulated acoustic intensity (i.e., Ispta < 720 mW/㎠), was transmitted through a HIFU transducer whereupon backscattered signals were received by the imaging transducer. To visualize the HIFU beam path, the backscattered signals underwent dynamic receive focusing and subsequent echo processing. From in vitro experiments with bovine serum albumin gel phantoms, the HIFU beam path was clearly depicted with low acoustic intensity (i.e., Ispta of 94.8 mW/㎠) and the HIFU focus was successfully localized before any damages were produced. This result indicates that the proposed ultrasound beam path visualization method can be used for localizing the HIFU focus in real time while minimizing unwanted tissue damage in USIgHIFU treatment.

Signal-Characteristic Analysis with Respect to Backing Material of PVDF-Based High-Frequency Ultrasound for Photoacoustic Microscopy (광음향 현미경을 위한 PVDF 기반 고주파수 초음파 변환기의 흡음층 소재에 따른 신호 특성 분석)

  • Lee, Junsu;Chang, Jin Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.2
    • /
    • pp.112-119
    • /
    • 2015
  • Photoacoustic microscopy is capable of providing high-resolution molecular images, and its spatial resolution is typically determined by ultrasonic transducers used to receive the photoacoustic signals. Therefore, ultrasonic transducers for photoacoustic microscopy (PAM) should have a high operating frequency, broad bandwidth, and high signal-reception efficiency. Polyvinylidene fluoride (PVDF) is a suitable material. To take full advantage of this material, the selection of the backing material is crucial, as it influences the center frequency and bandwidth of the transducer. Therefore, we experimentally determined the most suitable backing material among EPO-TEK 301, E-Solder 3022, and RTV. For this, three PVDF high-frequency single-element transducers were fabricated with each backing material. The center frequency and -6 dB bandwidth of each transducer were ascertained by a pulse-echo test. The spatial resolution of each transducer was examined using wire-target images. The experimental results indicated that EPO-TEK 301 is the most suitable backing material for a PAM transducer. This material provides the highest signal magnitude and a reasonable bandwidth because a large portion of the energy propagates toward the front medium, and the PVDF resonates in the half-wave mode.

Ultrasound Transducers in Several Tens MHz Band and Their Applications (수십 MHz 대역 초음파 트랜스듀서와 그 응용)

  • 하강렬;김무준
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.8
    • /
    • pp.622-628
    • /
    • 2003
  • Recently, ultrasound transducers in several tens MHz band, which can give the spatial resolution higher than several tens micrometers, have been intensively studying for applying to medical diagnostic fields of ophthalmology and dermatology. In this paper, the background of the studies, structures and characteristics of the transducers, and images obtained by the transducers are briefly reviewed.

Simulation and Measurement of Thermal Ablation in a Tissue-Mimicking Phantom and Ex-Vivo Porcine Liver by Using High Intensity Focused Ultrasound

  • Lee, Kang Il
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1289-1294
    • /
    • 2018
  • The present study aims to investigate experimentally and theoretically thermal ablation in soft tissues by using high intensity focused ultrasound (HIFU) to assess tissue damage during HIFU thermotherapy. The HIFU field was calculated by solving the axisymmetric Khokhlov-Zabolotskaya-Kuznetsov equation from the frequency-domain perspective. The temperature field was calculated by solving Pennes' bioheat transfer equation, and the thermal dose required to create a thermal lesion was calculated by using the thermal dose formula based on the thermal dose of a 240-min exposure at $43^{\circ}C$. In order to validate the simulation results, we performed thermal ablation experiments in a tissue-mimicking phantom and ex-vivo porcine liver for two different HIFU source conditions by using a 1.1-MHz, single-element, spherically focused HIFU transducer. The small difference between the measured and the predicted lesion sizes suggests that the implementation of the numerical model used here should be modified to iteratively allow for temperature-dependent changes in the physical properties of tissues.

Electromyographic Analysis of Wrist Flexors by the Shape of Ultrasound Head (초음파 도자의 모양에 따른 손목굽힘근의 근전도 분석)

  • Kim, Won-Ho;Kim, Jong-Man;Park, Hyung-Ki;Park, Eun-Young
    • Physical Therapy Korea
    • /
    • v.14 no.3
    • /
    • pp.9-15
    • /
    • 2007
  • The purpose of this study was to investigate electromyographic activities of the flexor digitorum superficialis (FDS) and the flexor carpi ulnaris (FCU) by the shape of the ultrasound head. Twelve healthy subjects participated and performed ultrasound therapy with a round head and a long handled head during each 5-minute application. Electromyographic activities of the FDS and FCU were recorded by surface electrodes and normalized by maximal voluntary isometric contraction (MVIC) values. There was no difference in the muscular fatigue of FDS and FCU as determined by the shape of the ultrasound head (p>.05). Without the shape of head, the mean power frequency decreased with the time. There also was no difference in %MVIC of the FDS and FCU as determined by the shape of the ultrasound head (p>.05), but the force exerted exceeded 20%MVIC. There was however a significant difference in the amount of cumulative workload of the FDS and FCU as determined by the shape of ultrasound head (p<.05). The workload was however not affected by the shape of the ultrasound head. Constant static grasp of ultrasound transducer head during ultrasound therapy is considered a high risk factor of work-related musculoskeletal disease.

  • PDF