• Title/Summary/Keyword: High frequency resonant inverter

Search Result 277, Processing Time 0.037 seconds

A Study on characteristic of a double resonant type high frequency inverter using Phase-Shift (Phase-Shift를 이용한 복공진형 고주파 인버터의 특성에 관한 연구)

  • 조규판;김종해;남승식;김동희;노채균;배영호
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.1
    • /
    • pp.109-117
    • /
    • 2000
  • A full bridge type double resonant high frequency resonant inverter to give VVVF function in the inverter used as power source of induction heating at high frequency is presented in this paper. This proposed inverter can reduce distribution of the switching current because of using the current of serial resonant circuit to the input current of the parallel one and this paper also realize the output control of independence irrespective of the switching frequency using Phase-shift. The analysis of the proposed circuit is generally described by using the normalized parameters. Also, the principle of basic operating and the its characteristics are estimated by the parameters, such as switching frequency, the variation of phase angle ($\phi$) of Phase-shift.

  • PDF

There-Phase Voltage-Source Soft-Switching Inverter with Auxiliary High Frequency Transformer Linked Power Regeneration Resonant Snubbers

  • Hattori, Hiroshi;Nakaoka, Mutsuo;Sakamoto, Kenji
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.153-158
    • /
    • 1998
  • In this paper, a prototype of the auxiliary resonant commutated snubber circuit(ARCS) with a high frequency transformer power regeneration loop is described for voltage source type sinewave inverter system. This is a new soft switching topology developed for three phase voltage source soft-switching inverter, active power filter and reactive power compensator has significant advantage of current rating reduction for auxiliary active switching devices. In addition, this paper presents a novel prototype of voltage-source soft switching space vector-modulated inverter with ARCS mentioned above, which is more suitable and acceptable for high-power utility interactive power conditioning, along with a digital control scheme. The steady-state operating analysis of ARCS has the remarkable features and the practical design procedure of this resonant snubber are illustrated on the basis of computer simulation analysis. The operating performance evaluations in the steady-state of this three phase voltage source soft switching inverter are discussed and compared with the three phase voltage source hard switching inverter.

  • PDF

A study on the frequency control of Induction Heating System for Using Resonant Inverter (공진형 인버터을 이용한 유도가열 시스템의 주파수 제어에 관한 연구)

  • Woo, Hyoung-Gyun;Yoo, Jae-Hoon;Kwon, Hyuk-Min;Sin, Dae-Chul
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.83-85
    • /
    • 2007
  • In this paper is described frequency control of Induction Heating System for using the resonant high-frequency inverter. To follow in output temperature and frequency in order to change, it controls a system and it confirms the electric change of induction heating system.

  • PDF

2.5MHz Zero-Voltage-Switching Resonant Inverter for Electrodeless Fluorescent Lamp (2.5MHz급 무전극 램프 구동용 ZVS 인버터에 관한 연구)

  • Park, D.H.;Kim, H.J.;Joe, K.Y.;Kye, M.H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.339-342
    • /
    • 1996
  • Driving the electrodeless fluorescent lamp, the high ac voltage with high frequency is required. The linear power amplifier has been widely used as a driving circuit of electrodeless fluorescent lamp. However, the low efficiency of the power amplifier causes the driving circuit to be replaced by a PWM switching inverter. In order to use a PWM switching inverter as the driving circuit of an electrodeless fluorescent lamp, the high switching frequency is required. But due to the switching loss at switches of the inverter, the limitation of high switching frequency appears in the inverter. One solution to this limitation is to reduce the switching loss by using the zero voltage switching technique. In this paper, zero voltage switching resonant inverter for driving an electrodeless fluorescent lamp is discussed. The results of analysis about the inverter are presented and the equations for design are established. And the validity of the analyzed results are verified through the experiment.

  • PDF

A Study on the Hooting of Aluminum Sheet by Full-Bridge Resonant Inverter (풀브리지 공진형 인버터를 이용한 알루미늄 박판가열에 관한 연구)

  • Shin, Dae-Chul;Kim, Sung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.8
    • /
    • pp.56-61
    • /
    • 2005
  • The induction heating is widely used not only in the industrial fields but also in the home appliances. But the conventional induction heating systems have shortcoming that it use only magnetic utensil, in this paper, heating of Aluminum sheet by full-bridge series resonant high-frequency inverter is proposed. Also, the principle of induction heating and operations of full-bridge inverter equivalent circuit are explained. The proposed inverter controls the output voltage using phase-shift irrespective of the switching frequency using phase-shift. As a result the proposed induction heating system by full-bridge resonant inverter shows the possibility that make up for the shortcoming of the conventional existing induction heating systems.

The Next Generation Apartment Model Far Infrared Rays Radiant Heater using Quasi-Resonant Soft Switching PWM Inverter

  • Kwon, Soon-Kurl;Mun, Sang-Pil
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.11
    • /
    • pp.15-22
    • /
    • 2008
  • This paper presents an innovative prototype of a new conceptual electromagnetic induction heated type far infrared rays radiant heating appliance using the voltage-fed quasi-resonant ZVS-PWM high frequency inverter using IGBTs for food cooking and processing which operates under a constant frequency variable power regulation scheme. This power electronic appliance with soft switching high frequency inverter using IGBTs has attracted special interest from some advantageous view points of safety, cleanliness, compactness and rapid temperature response, which is more suitable for consumer power electronics applications.

Analysis and Design of Resonant Inverter for Reactive Gas Generator Considering Characteristics of Plasma Load

  • Ahn, Hyo Min;Sung, Won-Yong;Lee, Byoung Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.345-351
    • /
    • 2018
  • This paper analyzes a resonant inverter to generate plasma. The resonant inverter consists of a full bridge converter, resonant network and reactor to generate a magnetic field for plasma generation. A plasma load has very distinct characteristics compared to conventional loads. The characteristics of plasma load are analyzed through experimental results. This paper presents the study on the resonant network, which was performed in order to determine how to achieve a constant current gain. Another important contribution of this study is the analysis of drop-out phenomenon observed in plasma loads which is responsible for unpredictable shutdown of the plasma generator that requires stable operation. In addition, the design process for the resonant network of a plasma generator is proposed. The validity of this study is verified through simulations and experimental results.

Analysis of Characteristic for LCC Resonant type High Frequency Inverter. (LCC 공진형 고주파 인버터의 특성해석)

  • Bae, Sang-June;Kim, Jong-Hae;Lee, Bong-Seop;Kim, Kyung-Sik;O, Seung-Hune;Min, Byung-Jae
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.495-497
    • /
    • 1996
  • This paper proposes LCC type high frequency resonant inverter to be used as a source of induction heating device or ultrasonic device and considers of operating characteristic for it. The inverter is operated safely over wide range load, because it has both panel loaded capacitor and series loaded capacitor. Then, switching frequency of the inverter is controlled by feedback voltage and current in order to have constant output power even when load is varied.

  • PDF

Drive Signal Phasor Control-Based High Frequency Resonant Inverter Using Power-SIT (구동 신호 Phasor 제어형 SIT 고주파 공진 인버터)

  • 김동희;노채균;김종해;정원영
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.1
    • /
    • pp.51-57
    • /
    • 1998
  • This paper proposed a novel SIT high frequency resonant inverter having drive signal phase shift control function. Phasor control type inverters using SIT can realize a power conversion on the high switching frequency with low switching loss. Especially, the high output power can be abstained by connecting the output voltage of two unit inverters In serIes. The stability of system using protection circuit for over current and the automatic follow-up control with load variation by PLL is presented. This inverter produce approximately sinusoidal waveform at a high frequency, switching frequency ranging from 180[kHz] to 220[kHz], and is applied to the 2[kW] induction heating. The operating characteristics of this inverter circuit are discussed from a theoretical point of view and compared with experimental results. results.

  • PDF

Lighting Control of High Pressure Discharge Lamp with High Frequency Source (고압 방전등의 고주파 점등 제어)

  • 이치환
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.114-118
    • /
    • 1999
  • This paper shows a structure for an electronic ballast of HID lamps. An electronic ballast for HID lamps usually employs a high-frequency resonant inverter and voltage-to-frequency converter to control the output. A half-bridge and series resonant circuit are chosen for the ballast. The inverter with V/F converter is modeled with a transfer function and a self-feedback controller is proposed. This structure is analyzed and the feedback gain is determined by using the inverter model. Experimental system is built with a commercial 250W high pressure sodium lamp and the results show a validity of the proposed ballast.

  • PDF