• 제목/요약/키워드: High frequency components

Search Result 994, Processing Time 0.029 seconds

Oscillation Frequency Detecting Technique for Transmission Line Protection using Prony's Analysis (프로니해석법을 이용한 공진 주파수 검출 알고리즘)

  • Cho, Kyung-Rae;Kim, Soong-Soo;Park, Jong-Koun;Hong, Jun-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.509-512
    • /
    • 1995
  • The relaying algorithm to calculate the fault distance from only transient signal at faults in T/L is presented. In this paper. At faults the oscillation frequency components exist in both voltage and current and these components minimize the input impedance shown in fault point. The equivalent source impedance shown in relaying point is needed to calculate the fault distance using these components. To source impedance, the reflection coefficient between forward wave and backward and the Prony's analysis is also employed to extract the oscillation frequency component from transient signals. The case study show that the new distance relaying algorithm satisfies the high operation speed and high accuracy even if the algorithm uses only transient signals.

  • PDF

An Analysis of the Ground Potential Rises and Dangerous Voltages Associated with the Frequency of Ground Currents (접지전류의 주파수에 따른 대지표면전위 상승 및 위험전압의 분석)

  • Choi, Jong-Hyuk;Cho, Yong-Sung;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.4
    • /
    • pp.97-103
    • /
    • 2011
  • The most important object of grounding systems is to protect human being from electric shock. Touch and step voltages are measured to evaluate the performances of grounding systems. Dangerous voltages have been largely studied by the power frequency fault currents, on the other hand, the ground current containing the high frequency components and surge currents haven't been considered. Many attempts about the grounding impedances reported in these days show that the performance of the grounding systems in high frequency range is very different with the ground resistance. It is necessary to analyze the dangerous voltages formed by the ground currents containing high frequency components. In this paper, the ground surface potential rises near the vertical and horizontal grounding electrodes are measured at the frequency of 100[Hz], 30[kHz], and 100[kHz]. Dangerous voltages are investigated with the frequency-dependent grounding impedance. As a result, the ground surface potential rise is increased as the grounding impedance increases. Touch and step voltages near the grounding electrode whose impedance increases with the frequency are sharply raised.

Series Resonant ZCS- PFM DC-DC Converter using High Frequency Transformer Parasitic Inductive Components and Lossless Inductive Snubber for High Power Microwave Generator

  • Kwon, Soon-Kurl;Saha, Bishwajit;Mun, Sang-Pil;Nishimura, Kazunori;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.18-25
    • /
    • 2009
  • Conventional series-resonant pulse frequency modulation controlled DC-DC high power converters with a high-frequency transformer link which is designed for driving the high power microwave generator has the problem of hard switching commutation at turn-on and turn-off of active power switching devices. This problem is due to the influence of the magnetizing current of the high-frequency transformer. This paper presents a novel prototype for a high-frequency transformer using parasitic parameters with a lossless inductive snubber and a series resonant capacitor assisted series-resonant zero current switching pulse frequency modulated DC-DC power converter, which is designed using a high power magnetron for microwave ovens. In order to implement a complete and efficient soft switching commutation, the performance of the new converter topology is practically confirmed and evaluated in the prototype of a power microwave generator.

A Study on Prediction of Conducted EMI In PWM inverter fed Induction Motor Drive System (PWM 인버터-유도전동기 구동시스템의 전도노이즈 예측에 관한 연구)

  • 이진환;안정준;원충연;김영석;최세완
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.367-372
    • /
    • 1999
  • In this paper, an inverter fed induction motor drive system is analyed in order to predict the conducted interference. High frequency model for inverter, motor and system parasitic components are proposed. High frequency component allows time and frequency domain analysis to be performed with standard PSpice tool. The overall high frequency component and model are verified by comparing simulation and experimental result.

  • PDF

Wavelet-Based Noise Estimation in Image (웨이브릿에 기반한 영상의 잡음추정)

  • 안태경;우동헌;김재호
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.747-750
    • /
    • 2001
  • The paper presents an algorithm for estimating the variance of additive zero mean Gaussian noise in an image. The algorithm uses the wavelet transform which is a good tool for energy compaction. The algorithm consists of three steps. At first, high frequency components, wavelet coefficients in HH band, are generated from a noisy image by the wavelet transform. In a second step, high frequency components which are out of the noise range ate eliminated. Finally, if the image has many components eliminated in the previous step, then its noise estimated value is reduced. Experimental results show that the wavelet filter has better performance than the other high pass filters such as a Laplacian filter, residual from a median filter, residual from a mean filter, and a difference operator. In various images, the algorithm reduces 50% of estimated error on an average.

  • PDF

Analysis of Partial Discharge Signal Using Wavelet Transform (웨이브렛 변환을 이용한 부분방전 신호의 분석)

  • Lee, Hyun-Dong;Kim, Chung-Nyun;Park, Kwang-Seo;Lee, Kwang-Sik;Lee, Dong-In
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.11
    • /
    • pp.616-621
    • /
    • 2000
  • This paper deals with the multiresolution analysis of wavelet transform for partial discharge(PD). Test arrangement is based on the needle-plane electrode system and applied AC high voltage. The measured PD signal was decomposed into "approximations" and "details". The approximation are the high scale, low-frequency components of the PD signal. The details are the low-scale, high frequency components. The decomposition process are iterated to 3 level, with successive approximation being decomposed in turn, so that PD signal is broken down into many lower-resolution components. Through the procedure of signal wavelet transform, signal noise extraction and signal reconstruction, the signal is analyzed to determine the magnitude of PD.

  • PDF

High-efficiency fuel-cell power inverter with soft-switching resonant technique (Soft-switching resonant technique을 적용한 고효율 PEMFC inverter)

  • Han, K.H.;Cho, Y.R.;Baek, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.326-328
    • /
    • 2005
  • In order to reduce the capital and overall operating cost of a fuel-cell system, a high-efficiency fuel-cell power inverter with a simple framework is required. The high-order two-inductance two-capacitance (LLCC) resonant technique is adopted in this study to implement a low-frequency 60-Hz sine wave voltage inverter utilized in the proton exchange membrane fuel-cell (PEMFC) system. The methodology for inverting dc voltage into low-frequency ac boltage is usually generated by the pulse-width-modulation (PWM) technique. However, the PWM-type inverter output has high-frequency harmonic components. Although an adequately designed filter could be utilized to overcome this problem, there are still some undesirable effects introduced by the high-frequency switching loss, electromagnetic-interference, harmonic current, and load variation. A novel power inverter via the LLCC resonant technique is designed for inverting dc voltage into 60-Hz ac sine wave voltage in the PEMFC system. This circuit scheme has the merits of low harmonic components, soft switching, high efficiency, and simplified implementation. The effectiveness of the proposed resonant inverter used for the PEMFC system is verified by numerical simulations and experimental results.

  • PDF

A Verification of the Contact Dynamics of the Current Collection System on a Test Run (실차실험에 의한 집전계의 접촉 동특성 규명)

  • Kim, Jung-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.4
    • /
    • pp.414-419
    • /
    • 2007
  • The contact characteristics of the current collection system are investigated by analyzing data collected during a test run of the Korean high speed rail vehicle. For the analysis, the signals from accelerometers and load cells attached to the various parts of the pantograph are analyzed in both the time and frequency domains. In the frequency domain, the pantograph response consists of low frequency components related to the rigid-body motion of the panhead assembly and high frequency components due to the structural vibration modes of the pantograph. The analysis shows that the inclusion of the high frequency structural vibration modes of the pantograph in the contact force calculation has a negligible effect on the predicted mean value of the contact force but significantly affects the magnitude of its fluctuations. This finding implies that numerical simulations using lumped element models of the pantograph may accurately predict the mean contact force but is limited in its capacity for predicting the fluctuation about the mean. Since the ratio of the fluctuation to the mean in the contact force increases with increased train speed, the limitation of the predictions based on numerical simulation results becomes more pronounced at higher train speed.

Estimation of Ionospheric Delays in Dual Frequency Positioning - Future Possibility of Using Pseudo Range Measurements -

  • Isshiki, Hiroshi
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.185-190
    • /
    • 2006
  • The correct estimation of the ionospheric delays is very important for the precise kinematic positioning especially in case of the long baseline. In case of triple frequency system, the ionospheric delays can be estimated from the measurements, but, in case of dual frequency system, the situation is not so simple. The precision of those supplied by the external information source such as IONEX is not sufficient. The high frequency component is neglected, and the precision of the low frequency component is not sufficient for the long baseline positioning. On the other hand, the high frequency component can be estimated from the phase range measurements. If the low frequency components are estimated by using the external information source or pseudo range measurements, a more reasonable estimation of the ionospheric delays may be possible. It has already been discussed by the author that the estimation of the low frequency components by using the external information source is not sufficient but fairly effective. The estimation using the pseudo range measurements is discussed in the present paper. The accuracy is not sufficient at present because of the errors in the pseudo range measurements. It is clarified that the bias errors in the pseudo range measurements are responsible for the poor accuracy of the ionospheric delays. However, if the accuracy of the pseudo range measurements is improved in future, the method would become very promising.

  • PDF

Numerical analysis on the flow noise characteristics of 300W Savonius-type vertical-axis wind turbines (300W급 Savonius 형 수직축 풍력발전기의 유동소음특성에 관한 수치적 연구)

  • Kim, Sanghyoen;Lee, Gwangse;Cheong, Cheolung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.725-730
    • /
    • 2012
  • In this paper, flow noise characteristics of Savonius-type vertical-axis wind turbines are numerically investigated using hybrid CAA techniques. High frequency harmonics as well as BPF components are identified in the predicted noise spectra from a Savonius wind turbine. As the BPF components belong to infrasound, the higher harmonic components affects human response dominantly. Further analysis is performed to investigate the reason causing the higher frequency harmonic noise by changing operational conditions of a Savonius wind turbine. Based on this result, it is revealed that the frequency of higher harmonic components is determined by the radius of blades and angular velocity of Savonius wind turbine.

  • PDF