• Title/Summary/Keyword: High energetic material

Search Result 66, Processing Time 0.033 seconds

An Investigation of Debris Configuration and Melt-Water Interaction in Steam Explosion Experiments using $ZrO_2$ (원자로 물질의 $ZrO_2$를 이용한 증기폭발 실험에서 용융물 거동 및 데브리의 분포)

  • Song, J.H.;Kim, H.D.;Hong, S.W.;Park, I.K.;Shin, Y.S.;Min, B.T.;Chang, Y.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.57-62
    • /
    • 2001
  • Korea Atomic Energy Research Institute (KAERI) launched an intermediate scale steam explosion experiment named Test for Real cOrium Interaction with water (TROI) using reactor material to investigate whether the corium would lead to energetic steam explosion when interacted with cold water at low pressure. The melt-water interaction is confined in a pressure vessel with the multi-dimensional fuel and water pool geometry. The cold crucible technology, where the mixture of powder in a water-cooled cage is heated by high frequency induction, is employed. In this paper, results of the first series of tests ($TROI-1{\sim}5$) were discussed. The ZrO2 jets with 5kg mass and 5cm diameter were poured into the 67cm deep water pool at $30{\sim}95^{\circ}C$. Either spontaneous steam explosions or quenching was observed. The morphology of debris and pressure wave profiles clearly indicates the each case.

  • PDF

Dependence on the Oxygen Gas of ITO Thin film for TOLED by Facing Targets Sputtering Method (대향타겟식 스퍼터링법을 이용한 TOLED용 ITO 박막의 산소 가스 의존성)

  • Keum Min-Jong;Kim Kyung-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.1
    • /
    • pp.87-90
    • /
    • 2006
  • In case of preparation of ITO thin film for using top electrode of Top-emitting Organic Light Emitting Diodes(TOLEDs), the ITO thin film should be prepared at room temperature and low oxygen gas flow condition in order to reduced the damage of organic layer due to the bombardment of highly energetic particles such as negative oxygen ions which accrued from the plasma. In this study, the ITO thin film with high optical transmittance and low resistivity prepared as a function of oxygen gas (0 ${\~}$ 0.8 sccm) and Ar gas was fixed at 20 sccm by the Facing Targets Sputtering (FTS) method. The electrical and optical properties of ITO thin films were measured by Hall effect measurement, UV/VIS spectrometer, respectively In the results, we obtained the ITO thin film with lowest resistivity($3{\times}10^{-4} {\Omega}{\cdot} cm$) at oxygen gas flow 0.2 sccm and optical transmittance over $80\%$ at oxygen gas flow over 0.2 sccm.

Degradation of Ultra-thin SiO2 film Incorporated with Hydrogen or Deuterium Bonds during Electrical Stress (수소 및 중수소가 포함된 실리콘 산화막의 전기적 스트레스에 의한 열화특성)

  • Lee, Jae-sung;Back, Jong-mu;Jung, Young-chul;Do, Seung-woo;Lee, Yong-hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.11
    • /
    • pp.996-1000
    • /
    • 2005
  • Experimental results are presented for the degradation of 3 nm-thick gate oxide $(SiO_2)$ under both Negative-bias Temperature Instability (NBTI) and Hot-carrier-induced (HCI) stresses using P and NMOSFETS, The devices are annealed with hydrogen or deuterium gas at high-pressure $(1\~5\;atm.)$ to introduce higher concentration in the gate oxide. Both interface trap and oxide bulk trap are found to dominate the reliability of gate oxide during electrical stress. The degradation mechanism depends on the condition of electrical stress that could change the location of damage area in the gate oxide. It was found the trap generation in the gate oxide film is mainly related to the breakage of Si-H bonds in the interface or the bulk area. We suggest that deuterium bonds in $SiO_2$ film are effective in suppressing the generation of traps related to the energetic hot carriers.

Synthesis and Lubricant Properties of Nitrogen doped Amorphous Carbon (a-C:N) Thin Films by Closed-field unbalanced Magnetron Sputtering Method (비대칭 마그네트론 스퍼터링법에 의한 비정질 질화탄소 박막의 합성 및 윤활 특성)

  • Park, Yong-Seob;Cho, Hyung-Jun;Choi, Won-Seok;Hong, Byung-You
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.8
    • /
    • pp.701-705
    • /
    • 2007
  • The incorporation of N in a-C film is able to improve the friction coefficient and the adhesion to various substrates. In this study, a-C:N films were deposited on Si and steel substrates by closed-field unbalanced magnetron (CFUBM) sputtering system in $Ar/N_2$ plasma. The lubricant characteristics was investigated for a-C:N deposited with total working pressure from 4 to 7 mTorr. We obtained high hardness up to 24GPa, friction coefficient lower than 0.1 and the smooth surface of having the extremely low roughness (0.16 nm). The physcial properties of a-C:N thin film are related to the increase of cross-linked $sp^2$ bonding clusters in the film. However, the decrease of hardness, elastic modulus and the increase of surface roughness, friction coefficient with the increase of $N_2$ partial pressrue might be due to the effect of energetic ions as a result of the increase of ion bombardment with the increase of ion density in the plasma.

Characteristics of organic light-emitting diodes with AI cathode prepared by ITS system (TTS로 성막한 Al 캐소드를 가진 유기발광소자의 특성 분석)

  • Moon, Jong-Min;Lee, Sang-Hyun;Kim, Han-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.74-75
    • /
    • 2007
  • We report on the characteristics of organic light-emitting diodes with Al cathode deposited by specially designed twin target sputter(TTS) system. It was found that the Al cathode films grown by TTS system were amorphous structure with nanocrystallines due to low substrate temperature during sputtering process. Effective confinement of high-density plasma between two Al targets lead to low temperature sputtering process on organic layer. Moreover, organic light-emitting diodes with Al cathode deposited by TTS system exhibited low leakage current density of $4{\times}10^{-6}\;mA/cm2$ at -6 V indicating plasma damage due to bombardment of energetic particles such as ions and $\gamma$-electrons was effectively restricted in the ITS system. Sputtering method using ITS system is expected to be applied in organic electronics and flexible displays due to its low temperature and plasma damage free deposition process.

  • PDF

A Study on the Quality Improvement of Oil Refueling for the Use of Renewable Energy Fuel (신재생에너지 연료용 유화유의 품질 개선에 관한 연구)

  • Lee, Jin;Kim, Hwaseong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.6
    • /
    • pp.505-509
    • /
    • 2020
  • The development of diesel power generation is predominantly geared toward island areas or ships because diesel exhibits weak scale-merit characteristics and power quality problems, which are associated with environmental pollution. However, a new energy paradigm, distribution energy resource (DER), has been emerging as a renewable energy source due to the existing structural problems in waste disposal and complex factors such as the conversion technology of waste emulsified oil (WDF). By combining extended producer responsibility (EPR) support and renewable energy certificates (REC), including waste energy REC 0.25 for other bioenergy and REC 1.0 for power transactions, an adequate profit model can be built through self-energetic power generation, thereby drawing keen attention from related industries. Therefore, if WDF is used appropriately as a high-quality engine fuel, it can lead to the development of various fields such as novel renewable energy sectors, waste management, and EPR-related industries. This study is intended to produce WDF using plastic waste by using it as engine-generator fuel. Moreover, we investigate ways to improve the quality and suitability of WDF as an engine fuel.

Effect of Abrasive Particles on Frictional Force and Abrasion in Chemical Mechanical Polishing(CMP) (CMP 연마입자의 마찰력과 연마율에 관한 영향)

  • Kim, Goo-Youn;Kim, Hyoung-Jae;Park, Boum-Young;Lee, Hyun-Seop;Park, Ki-Hyun;Jeong, Hae-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.10
    • /
    • pp.1049-1055
    • /
    • 2004
  • Chemical Mechanical Polishing (CMP) is referred to as a three body tribological system, because it includes two solids in relative motion and the CMP slurry. On the assumption that the abrasives between the pad and the wafer could be a major reason not only for the friction force but also for material removal during polishing, the friction force generated during CMP process was investigated with the change of abrasive size and concentration of CMP slurry. The threshold point of average coefficient of friction (COF) with increase in abrasives concentration during interlayer dielectric (ILD) CMP was found experimentally and verified mathematically based on contact mechanics. The predictable models, Mode I (wafer is in contact with abrasives and pad) and Mode II (wafer is in contact with abrasives only), were proposed and used to explain the threshold point. The average COF value increased in the low abrasives concentration region which might be explained by Mode I. In contrast the average COF value decreased at high abrasives concentration which might be regarded to as Mode II. The threshold point observed seemed to be due to the transition from Mode I to Mode II. The tendency of threshold point with the variation of abrasive size was studied. The increase of particle radius could cause contact status to reach transition area faster. The correlation between COF and material removal rate was also investigated from the tribological and energetic point of view. Due to the energy loss by vibration of polishing equipment, COF value is not proportional to the material removal rate in this experiment.

Nitrogen Incorporation of Nanostructured Amorphous Carbon Thin Films by Aerosol-Assisted Chemical Vapor Deposition

  • Fadzilah, A.N.;Dayana, K.;Rusop, M.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.4
    • /
    • pp.165-171
    • /
    • 2013
  • Nanostructured pure a-C and nitrogen doped a-C: N thin films with small particle size of, ~50 nm were obtained by Aerosol-assisted CVD method from the natural precursor camphor oil. Five samples were prepared for the a-C and a-C: N respectively, with the deposition temperatures ranging from $400^{\circ}C$ to $600^{\circ}C$. At high temperature, the AFM clarifies an even smoother image, due to the increase of the energetic carbon ion bombardment at the surface of the thin film. An ohmic contact was acquired from the current-voltage solar simulator characterization. The higher conductivity of a-C: N, of ${\sim}{\times}10^{-2}Scm^{-1}$ is due to the decrease in defects since the spin density gap decrease with the nitrogen addition. Pure a-C exhibit absorption coefficient, ${\alpha}$ of $10^4cm^{-1}$, whereas for a-C:N, ${\alpha}$ is of $10^5cm^{-1}$. The high ${\sigma}$ value of a-C:N is due to the presence of more graphitic component ($sp^2$ carbon bonding) in the carbon films.

Synthesis and Characteristics of Type-II ZnO/ZnSe Core/Shell Heterostructures for High Efficient Photocatalytic Activity (Type-II ZnO/ZnSe 코어/쉘 이종 구조 합성 및 광촉매활성 평가)

  • Lee, Woo-Hyoung;Choi, Kwang-Il;Kang, Dong-Cheon;Beak, Su-Woong;Lee, Suk-Ho;Lim, Cheol-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.3
    • /
    • pp.178-183
    • /
    • 2014
  • Recently, various type of nanomaterials such as nanorod, nanowire, nanotube and their core/shell nanostructures have attracted much attention in photocatalyst due to their unique properties. Among them, Type-II core/shell heterostructures have extensively studied because it has exhibited improved electrical and optical properties against their single-component nanostructure. Such structures are expected to offer high absorption efficiency and fast charge transport due to their stepwised energetic combination and large internal surface area. Thus, it has been considered as potential candidates for high efficient photocatalytic activity. In this work, we introduce a novel chemical conversion process to synthesize Type-II ZnO/ZnSe core/shell heterostructures. A plausible conversion mechanism to ZnO/ZnSe core/shell heterostructres was proposed based on SEM, XRD, TEM and XPS analysis. The ZnO/ZnSe heterostructures exhibited excellent photocatalytic activity toward the decomposition of RhB dye compared to the ZnO nanorod arrays due to enhanced light absorption and the type-II cascade band structure.

Study on Damage Reduction of $(Ba_{0.6}Sr_{0.4})TiO_{3}$ Thin Films in $Ar/CF_{4}$ Plasma ($Ar/CF_{4}$ 유도결합 플라즈마에서 식각된 $(Ba_{0.6}Sr_{0.4})TiO_{3}$ 박막의 손상 감소)

  • Kang, Pil-Seung;Kim, Kyung-Tae;Kim, Dong-Pyo;Kim, Chang-Il;Hwang, Jin-Ho;Kim, Tae-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.171-174
    • /
    • 2002
  • The barium strontium titannate (BST) thin films were etched in $CF_{4}/Ar$ inductively coupled plasma (ICP). The high etch rate obtained at a $CF_{4}(20%)/Ar(80%)$ and the etch rate in pure argon was twice higher than that in pure $CF_{4}$. This indicated that BST etching is sputter dominant process. It is impossible to avoid plasma-induced damages by the energetic particles in the plasma and the nonvolatile etch products. The plasma damages were evaluated in terms of leakage current density, residues on the etched sample, and the changes of roughness. After the BST thin films exposed in the plasma, the leakage current density and roughness increases. In addition, there are appeared a nonvolatile etch byproductsand from the result of X-ray photoelectron spectroscopy (XPS). After annealing at ${600^{\circ}C}$ for 10 min in $O_{2}$ ambient, the increased leakage current density, roughness and nonvolatile etch byproducts reduced. From the this results, the plasma induced damage recovered by annealing process owing to the relaxation of lattice mismatches by Ar ions and the desorption of metal fluorides in high temperature.

  • PDF