• Title/Summary/Keyword: High density plasma etching

Search Result 159, Processing Time 0.025 seconds

A Study on the Optimal Magnet for ECR (ECR 용 최적 마그네트에 관한 연구)

  • Kim, Y.T.;Kim, Y.J.;Kim, K.S.;Lee, Y.J.;Son, M.H.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.649-652
    • /
    • 1992
  • ECR(Electron Cyclotron Resonance) occure at ${\omega}_c$=${\omega}$, ${\omega}_c$:electron cycltron frequency, ${\omega}$:electromagnetic wave frequency. ECR system have several merit, 1) power transefer efficiency 2) low neutral gas pressure (below 1 mTorr) 3) high plasma density($10^{12}$ $cm^{-3}$). It is applicated variously in the field of semiconductor and new materials as the manufacturing equipment. Magnetic field in ECR system contruct resonance layer (${\omega}$=2.45GHz, $B_z$=875 Gauss) and control plasma. Plasma is almost generated at resonance layer. If the distance between substrate and resonance layer is short, uniformity of plasma is related with profile of resonance layer. Plasma have the property "Cold in Field", so directonality of magnetic field is one of the control factors of anisotropic etching. In this study, we calculate B field and flux line distribution, optimize geometry and submagnet current and improve of magnetic field directionality (99.9%) near substrate. For the purpose of calculation, vector potential A(r,z) and magnetic field B(r,z), green function and numerical integration is used. Object function for submagnet optimization is magnetic field directionality on the substrate and Powell method is used as optimization skim.

  • PDF

Plasma Resistance Evaluation and Characteristics of Yttria Ceramics Sintered by Using Calcination Yttria (하소이트리아 소결체의 특성과 플라즈마저항성 평가)

  • Choi, Jinsam;Nakayama, Tadachika;Bae, Won Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.5
    • /
    • pp.348-352
    • /
    • 2013
  • The evaluation of plasma resistance and the characteristics of yttria ceramics fabricated by calcination yttria as a starting material without dopants under an oxidation atmosphere was investigated. Regardless of the starting materials, as-received, and calcined yttria powder, XRD patterns showed that all samples have $Y_2O_3$ phase. The three cycling process inhibited a large grain, which occurs frequently during the yttria sintering, and a high density ceramic with a homogeneous grain size was obtained. The grain size of the sintered ceramic was affected by the starting powders. The smaller the grain size, the larger were the Young's modulus and KIC. Compared to $Al_2O_3$ and $ZrO_2$ ceramics, yttria ceramics showed a 3 times larger plasma resistance and a 1.4~2.2 times lower weight loss during the plasma etching test, respectively.

Effects of Bias Voltage and Ion-incident Angle on the Etching of Photoresist in a High-density CHF3 Plasma (고밀도 CHF3 플라즈마에서 바이어스 전압과 이온의 입사각이 Photoresist의 식각에 미치는 영향)

  • Kang, Se-Koo;Min, Jae-Ho;Lee, Jin-Kwan;Moon, Sang Heup
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.498-504
    • /
    • 2006
  • The etch rates of photoresist (PR) and the etch selectivity of $SiO_2$ to PR in a high density $CHF_3$ plasma were investigated at different ion-incident angles and bias voltages. A Faraday cage was employed for the accurate control of ion-incident angles. The ion energy was controlled by changing bias voltages. The etch rate of $SiO_2$ continuously decreased with ion-incident angles but the etch rate of PR remained constant up to the middle angle region and decreased afterwards. The etch rates of $SiO_2$ normalized to those at $0^{\circ}$ incident angle changed with the ion-incident angle following a cosine(${\theta}$) curve. On the other hand, the normalized etch rates of the PR changed showing a drastic over-cosine shape in the middle angle region. The etch selectivity of $SiO_2$ to PR decreased with an increase in the ion-incident angle because the etch yields of PR were enhanced by physical sputtering in the middle angle region compared to the case of $SiO_2$ etching. The etch selectivity of $SiO_2$ to PR decreased with an increase in the bias voltage at nearly all ion-incident angles.

Foramtion and Characterization of SiO$_2$ films made by Remote Plasma Enhanced Chemical vapour Deposition (Remote PECVD (RPECVD) SiO$_2$ 막의 형성 및 특성)

  • 유병곤;구진근;임창완;김광호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.171-174
    • /
    • 1994
  • The drive towards ultra-large-scale integrated circuits a continuous intermetal dielectric films for multi layer interconection. Optimum condition of remote plasma enhanced chemical vapour deposition(RPECVD) was achieved by orthogonal array method. Chracteristics of SiO$_2$ films deposited by using remote PECVD with N$_2$O gas were investigated. Etching rate of SiO$_2$ films in P-echant was about 6[A/s] that was the same as the thermal oxide. The films a showed high breakdown voltage of 7(MV/cm) and a resistivity of Bx10$\^$13/[$\Omega$cm] at 7(MV/cm). The interface Trap density of SiO$_2$ has been shown excel lent properties of 5x10$\^$10/[/$\textrm{cm}^2$eV]. It was observed that the dielectric constant dropped to a value of 4. 29 for 150 [W] RF power.

Flexible, Tunable, and High Capacity Ultracapacitor using Nitron-Doped Graphene (질소가 도핑된 그라핀을 이용한 고용량의 조절이 가능한 플렉서블 울트라커페시터)

  • Jeong, Hyung Mo;Shin, Weon Ho;Choi, Yoon Jeong;Kang, Jeung Ku;Choi, Jang Wook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.163.2-163.2
    • /
    • 2010
  • We developed a simple method to synthesis a nitrogen doped graphene, nitrogen plasma treated graphene (NPG) sheets thought nitrogen plasma etching of graphene oxide (GO). X-ray photo electron spectroscopy (XPS) study of NPG sheets treated at various plasma conditions reveal that N-doping is classified to 3 kinds of binding configurations. The nitrogen doping concentration is at least 1.5 at % and up to 3 at% with changing of ratio of nitrogen configuration in NPG. Our group demonstrate ultracapacitor with high capacity and extremely durable using a NPG sheets that are comparable to pristine graphene supercapacitor, and pseudocapacitor using polymer and metal oxide with redox reaction, capacitance that are three-times higher, and a cycle life that are extremely stable. We also realized flexible capacitor by using the paper electrode that are coated by NPG sheets. NPG paper capacitor presented almost same performance compare with NPG on a metal substrate, and durability is much more enhanced than that. To additionally explain that how different kind of atoms in graphene layers can act as the ion absorption sites, we simulated the binding energy between nitrogen in graphene layer and ions in electrolyte. Increasing the energy density and long cycle life of ultracapacitor will enable them to compete with batteries and conventional capacitors in number of applications.

  • PDF

Etchless Fabrication of Cu Circuits Using Wettability Modification and Electroless Plating (젖음성 차이와 무전해도금을 이용한 연성 구리 회로패턴 형성)

  • Park, Sang-Jin;Ko, Tae-Jun;Yoon, Juil;Moon, Myoung-Woon;Han, Jun Hyun
    • Korean Journal of Materials Research
    • /
    • v.25 no.11
    • /
    • pp.622-629
    • /
    • 2015
  • Cu circuits were successfully fabricated on flexible PET(polyethylene terephthalate) substrates using wettability difference and electroless plating without an etching process. The wettability of Cu plating solution on PET was controlled by oxygen plasma treatment and $SiO_x$-DLC(silicon oxide containing diamond like carbon) coating by HMDSO(hexamethyldisiloxane) plasma. With an increase of the height of the nanostructures on the PET surface with the oxygen plasma treatment time, the wettability difference between the hydrophilicity and hydrophobicity increased, which allowed the etchless formation of a Cu pattern with high peel strength by selective Cu plating. When the height of the nanostructure was more than 1400 nm (60 min oxygen plasma treatment), the reduction of the critical impalement pressure with the decreasing density of the nanostructure caused the precipitation of copper in the hydrophobic region.

F Ion-Assisted Effect on Dry Etching of GaAs over AlGaAs and InGaP (GaAs/AlGaAs와 GaAs/InGaP의 건식 식각 시 Flourine 이온의 효과)

  • Jang, Soo-Ouk;Park, Min-Young;Choi, Chung-Ki;Yoo, Seung-Ryul;Lee, Je-Won;Song, Han-Jung;Jeon, Min-Hyon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.164-165
    • /
    • 2005
  • The dry etch characteristics of GaAs over both AlGaAs and InGaP in planar inductively coupled $BCl_3$-based plasmas(ICP) with additions of $SF_6$ or $CF_4$ were studied. The additions of flourine gases provided enhanced etch selectivities of GaAs/AlGaAs and GaAs/InGaP. The etch stop reaction involving formation of involatile $AlF_3$ and $InF_3$ (boiling points of etch products: $AlF_3\sim1300^{\circ}C$, $InF_3$ > $1200^{\circ}C$ at atmosphere) were found to be effective under high density inductively coupled plasma condition. Decrease of etch rates of all materials was probably due to strong increase of flourine atoms in the discharge, which blocked the surface of the material against chlorine neutral adsorption. The process parameters were ICP source power (0 - 500 W), RF chuck power (0 - 30 W) and variable gas composition. The process results were characterized in terms of etch rate, selectivities of GaAs over AlGaAs and InGaP, surface morphology, surface roughness and residues after etching.

  • PDF

Optimization of remote plasma enhanced chemical vapor deposition oxide deposition process using orthogonal array table and properties (직교배열표를 쓴 remote-PECVD 산화막형성의 공정최적화 및 특성)

  • 김광호;김제덕;유병곤;구진근;김진근
    • Electrical & Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.171-175
    • /
    • 1995
  • Optimum condition of remote plasma enhanced chemical vapor deposition using orthogonal array method was chosen. Characteristics of oxide films deposited by RPECVD with SiH$_{4}$ and N$_{2}$O gases were investigated. Etching rate of the optimized SiO$_{2}$ films in P-etchant was about 6[A/s] that was almost the same as that the high temperature thermal oxide. The films showed high dielectric breakdown field of more than 7[MV/cm] and a resistivity of 8*10$^{13}$ [.ohmcm] around at 7[MV/cm]. The interface trap density of SiO$_{2}$/Si interface around the midgap derived from the high frequency C-V curve was about 5*10$^{10}$ [/cm$^{2}$eV]. It was observed that the dielectric constant of the optimized SiO$_{2}$ film was 4.29.

  • PDF

Dry Etching of Pt/RuO$_{2}$ for Pb(Zr,Ti)O$_{3}$ by High Density Plasma (고밀도 플라즈마를 이용한 PZT용 Pt/RuO$_{2}$ 이중박막의 식각)

  • Lee, Jong-Geun;Park, Se-Geun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.3
    • /
    • pp.1-5
    • /
    • 2000
  • Inductively coupled plasma (ICP) excited by a spiral planar antenna is used to etch elctrodes for PZT capacitors. Pt/RuO$_{2}$ bilayers are tested as bottom electrodes for PZT capacitors in order to utilize better leakage characteristics of Pt and easy etch characteristics of RuO$_{2}$ at the same time. The etch rates and selectivities to SiO$_{2}$ hard mask have been measured for each of Pt and RuO$_{2}$ in terms of various plasma conditions. As Cl$_{2}$ ratio increases in $O_{2}$/Cl$_{2}$ mixture, the etch rate of Pt increases while that of RuO$_{2}$ reaches the highest near 10 % of Cl$_{2}$. Optimum gas mixture ratio has been determined for etching Pt and RuO$_{2}$ bilayers sequentially, and sub-half micron patterning is demonstrated.

  • PDF

Effect of Glass Frit Addition on Characteristics of Yttria Ceramics (이트리아 소결체의 특성에 글라스프릿 첨가가 미치는 영향)

  • Ji-Sun Lee;Sunwoog Kim;Mu-Kun Roh;Chang-Yong Oh;Jinho Kim
    • Korean Journal of Materials Research
    • /
    • v.34 no.6
    • /
    • pp.303-308
    • /
    • 2024
  • The semiconductor and display industries require the development of plasma resistant materials for use in high density plasma etching process equipment. Yttria (Y2O3) is a ceramic material mainly used to ensure good plasma resistance properties, which requires a dense microstructure. In commercial production, a sintering process is applied to reduce the sintering temperature of Y2O3. In this study, the effect of the addition of glass frit to the sintered specimen was examined when manufacturing yttria sintered specimens for semiconductor process equipment parts. The Y2O3 specimen was shaped into a Ø50 mm size and then sintered at 1,600 ℃ for 1~8 h. The characteristics, X-ray diffraction pattern, densities, contraction rate of the specimen, and swelling of the surface of the Y2O3 specimens were investigated as a function of the sintering time and glass frit addition. The Y2O3 specimen exhibited a density of over 4.9 g/cm3 as the sintering time increased, and the swelling phenomenon characteristics were improved by glass frit, by controlling particle size.