• Title/Summary/Keyword: High Strength-Toughness Steel

Search Result 220, Processing Time 0.03 seconds

Manufacturing Technologies and Applications of Steel Strip Products (철강 압연제품의 제조기술 및 응용)

  • 권오준
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.10-21
    • /
    • 1999
  • Recent progress in manufacture of hot and cold rolled steel strip products and their applications were reviewed. The main trend in the technological development has been to meet the customers' requests for quality improvement and cost reduction. The weight reduction to reduce the fuel consumption is the main issue in the automotive industry and, therefore, various steels have been developed to improve formability as well as strength. The steels include super-EDDQ steels, bainitic steels, TRIP steels, etc. In the oil industry, efforts have been focused to improve strength together with either low temperature toughness or HIC/SSCC resistance. The packaging industry is also a highly competitive market, and steel and canmaking companies have worked cooperatively to develop cost-effective canmaking processes as well as high performance steels. This type of cooperation has also been found important in other industries such as the appliance and electronic industries for the benefits of both steelmakers and customers.

  • PDF

Evaluation of Fracture Strength and Material Degradation for Weldment of High Temperature Service Steel Using Advanced Small Punch Test

  • Lee, Dong-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1604-1613
    • /
    • 2004
  • This paper presents an effective and reliable evaluation method for fracture strength and material degradation of the micro-structure of high temperature service steel weldment using advanced small punch (ASP) test developed from conventional small punch (CSP) test. For the purpose of the ASP test, a lower die with a minimized ${\Phi}$1.5 mm diameter loading ball and an optimized deformation guide hole of ${\Phi}$3 mm diameter were designed. The behaviors of fracture energy (E$\_$sp/), ductile-brittle transition temperature (DBTT) and material degradation from the ASP test showed a definite dependency on the micro-structure of weldment. Results obtained from ASP test were compared and reviewed with results from CSP test, Charpy impact test, and hardness test. The utility and reliability of the proposed ASP test were verified by investigating fracture strength, behavior of DBTT, and fracture location of each micro-structure of steel weldment for test specimen in ASP test. It was observed that the fracture toughness in the micro-structure of FL+CGHAZ and ICHAZ decreased remarkably with increasing aging time. From studies of all micro-structures, it was observed that FGHAZ microstructure has the most excellent fracture toughness, and it showed absence of material degradation.

A Study on Fatigue and Fracture Toughness on Change Temperature of Spring Steel for Automobile (자동차용 스프링강의 온도변화에 따른 피로 및 파괴인성에 관한 연구)

  • Kim, Chu-Yong;Park, Won-Jo;Jung, Jae-Wook;Huh, Sun-Chul
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.308-313
    • /
    • 2004
  • Recently, the steel parts used for automobiles and trains are required to be used under higher stress than ever before in need of the weight down. In this study, high strength and superior toughness spring steels as the suspension material, used for automobile and railroad industries were utilized to carry out the following in vestigations; 1) To evaluate the characteristics of fatigue crack propagation, the experiments of fatigue crack growth were respectively carried out at the room temperature(RT), $100^{\circ}C$, $200^{\circ}C$ 2) Peening and unpeening materials at the each temperature were investigated for the effect on fracture toughness by compressive residual stress generated from the shot peeing.

  • PDF

Experimental Behavior of Circular Tube Members with 600MPa High-strength Steel (600MPa급 고강도 원형강관 부재의 성능 평가)

  • Lee, Eun-Taik;Cho, Jae-Young;Shim, Hyun-Ju;Kim, Jin-Ho
    • Land and Housing Review
    • /
    • v.2 no.1
    • /
    • pp.47-52
    • /
    • 2011
  • Recent advances of technology in materials science have made it easy to respond to user's needs on high performance steel in civil and building structures. The high-performance and high-strength steel are required for large scale structure and high-rise building to have high-strength, high fracture toughness and better weldability etc. Therefore development of 600MPa class steel for mega structure is necessary. high strength steels, however, may have mechanical properties that are significantly different from those of the conventional steels. The application of high-strength steels to building structures should be reviewed as to whether inelastic behavior equivalent to that of conventional steels can be attained or not. This study researched the structural behavior of high strength circular tubes compression and under flexure. Three column tests and three flexural tests were carried out. The suitability of existing design formulae(KBC 2009) and the structural behavior were investigated through these columns and beams with various types.

A study on the fatigue fracture characteristics of TMCP high tensile strength steel welds (TMCP 고장력강 용접부의 피로파양 특성에 관한 연구)

  • 김영식;노재충;한명수;김윤해
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.47-54
    • /
    • 1988
  • TMCP steel manufactured by controlled rolling followed by accelerated cooling process is known to have extra-ordinary mechanical properties such as tensile strength and toughness. However, there is much uncertainty about the fatigue fracture characteristics of this steel. In this paper, the fatigue fracture behaviour of the TMCP steel in base metal and weldment were inspected through the Dynamic Implant test method. Those results were quantitavely compared with those of the ordinary normalized steel of same strength level. Moreover, the effect of the diffusible hydrogen included in the welded part on the fatigue fracture behaviour were made clear. As the experimental results, the fatigue fracture characteristics of the TMCP steel in case of base metal proved out to be superior to that of the normalized steel. However, the TMCP steel weldment including the diffusible hydrogen appeared to have inferior fatigue characteristics compared with the same conditioned normalized steel weldment.

  • PDF

A characteristics of base metal and weldment of 100ksi class high strength steel (100ksi급 고장력강의 모재 및 용접부 특성)

  • 박태원;심인옥;김영우;강정윤
    • Journal of Welding and Joining
    • /
    • v.14 no.5
    • /
    • pp.134-144
    • /
    • 1996
  • A study was performed to investigate the properties of base metal and weldment for two HSLA steels and one HY-100 steel. Tensile, yield strength and elongation of HSLA-A steel were superior to those of HY-100 steel and yield ratios in HSLA-A and HSLA-B steels were higher than HY-100 steel owing to the precipitation of $\varepsilon$-Cu phase. The impact energy of HSLA-A steel was greater at all aging temperatures than that of HY-100 steel. HSLA-A and HY-100 steels had low impact transition temperature of about -l$25^{\circ}C$ and high upper shelf energy, The peak hardness of weldment in HSLA-A, HSLA-B and HY-100 steels were Hv 299, Hv 275 and Hv 441, respectively. The hardenability of HY-100 steel was largest due to the higher amount of carbon. The y-groove test showed that HSLA steels had superior resistance to cold cracking. Toughness of weld joint at the F. L. and F. L. +1mm in HSLA-A was almost the same as HY-100, but those at F. L.+3mm and F. L.+5mm was greater in HSLA-A steel.

  • PDF

Assessment of titanium alloy bolts for structural applications

  • Li, Dongxu;Uy, Brian;Wang, Jia;Song, Yuchen
    • Steel and Composite Structures
    • /
    • v.42 no.4
    • /
    • pp.553-568
    • /
    • 2022
  • This paper explored the viability of utilising titanium alloy bolts in the construction industry through an experimental programme, where a total of sixty-six titanium alloy (Ti/6Al/4V) bolts were tested under axial tension, pure shear and combined tension and shear. In addition, a series of Charpy V-notch specimens machined from titanium alloy bolts, conventional high-strength steel bolts, austenitic and duplex stainless steel bolts were tested for impact toughness comparisons. The obtained experimental results demonstrated that the axial tensile and pure shear capacities of titanium alloy bolts can be reasonably estimated by the current design standards for steel structures (Eurocode 3, AS 4100 and AISC 360). However, under the combined tension and shear loading conditions, significant underestimation by Eurocode 3 and unsafe predictions through AS 4100 and AISC 360 indicate that proper modifications are necessary to facilitate the safe and economic use of titanium alloy bolts. In addition, numerical models were developed to calibrate the fracture parameters of the tested titanium alloy bolts. Furthermore, a design-based selection process of titanium alloy bolts in the structural applications was proposed, in which the ultimate strength, ductility performance and corrosion resistance (including galvanic corrosion) of titanium alloy bolts was mainly considered.