• Title/Summary/Keyword: High Speed AFM

Search Result 19, Processing Time 0.029 seconds

AFM modulation algorithm for the high speed measurement using a heterodyne laser interferometer (헤테로다인 레이저 간섭계에서 고속 측정을 위한 주파수 변조 알고리즘)

  • Choi H.S.;Yoon H.S.;Park K.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.922-925
    • /
    • 2005
  • This article describes a FM modulation algorithm to increase the measurement speed by increasing the beat frequency of the laser without acousto-optic modulator(AOM) in the heterodyne laser interferometer. The proposed algorithm can increase the beat frequency of the heterodyne laser which limit the measurement speed by adjusting a carrier frequency through electronic circuit, while AOM is used to shift the frequency of the heterodyne laser in conventional method. Electronic circuit is constructed to modulate the signals from a laser interferometer and a waveform generator. The brier analysis, the measurement scheme of the system, and the experimental results using a Zeeman-stabilized He-Ne laser are presented. They demonstrate that the proposed algorithm is proven to enhance the measurement speed limit by increasing the beat frequency of the heterodyne laser.

  • PDF

Piezoelectric PZT Cantilever Array Integrated with Piezoresistor for High Speed Operation and Calibration of Atomic Force Microscopy

  • Nam, Hyo-Jin;Kim, Young-Sik;Cho, Seong-Moon;Lee, Caroline-Sunyong;Bu, Jong-Uk;Hong, Jae-Wan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.4
    • /
    • pp.246-252
    • /
    • 2002
  • Two kinds of PZT cantilevers integrated with a piezoresistor have been newly designed, fabricated, and characterized for high speed AFM. In first cantilever, a piezoresistor is used to sense atomic force acting on tip, while in second cantilever, a piezoresistor is integrated to calibrate hysteresis and creep phenomena of the PZT cantilever. The fabricated PZT cantilevers provide high tip displacement of $0.55\mu\textrm{m}/V$ and high resonant frequency of 73 KHz. A new cantilever structure has been designed to prevent electrical coupling between sensor and PZT actuator and the proposed cantilever shows 5 times lower coupling voltage than that of the previous cantilever. The fabricated PZT cantilever shows a crisp scanned image at 1mm/sec, while the conventional piezo-tube scanner shows blurred image even at $180\mu\textrm{m}/sec$. The non-linear properties of the PZT actuator are also well calibrated using the piezoresistive sensor for calibration.

Study on Surface Characteristics of Fe Doped MgO Protective Layer (Fe가 첨가된 MgO 보호막의 표면특성 개선에 관한 연구)

  • Lee, Don-Kyu;Park, Cha-Soo;Kim, Kwong-Toe;Sung, Youl-Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.2
    • /
    • pp.106-112
    • /
    • 2010
  • In order to compete with other flat display devices such as Liquid Crystal Displays (LCDs) and organic light emitting diodes (OLEDs), Plasma Display Panels (PDPs) require to have high performances like high image quality, low power consumption and high speed driving. In this paper, Fe doped MgO protective layer was introduced for higher performance. Both the surface characteristics of the deposited thin films and the electro-optical properties of 4 inch test panels were investigated. It has been demonstrated experimentally that ac PDP with Fe doped MgO protective layer has lower discharge voltage than that of undoped MgO film, which corresponds to measured secondary electron emission coefficients. The crystallinity and surface roughness of thin films were determined by XRD patterns and AFM images. In addition, ac PDP with Fe doped MgO protective layer has improved address discharge time lag for high speed driving.

Silicon Nitride Cantilever Array Integrated with Si Heaters and Piezoelectric Sensors for Probe-based Data Storage

  • Nam Hyo-Jin;Kim Young-Sik;Lee Caroline Sunyong;Jin Won-Hyeog;Jang Seong-Soo;Cho Il-Joo;Bu Jong-Uk
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.1
    • /
    • pp.73-77
    • /
    • 2005
  • In this paper, a new silicon nitride cantilever integrated with silicon heater and piezoelectric sensor has been firstly developed to improve the uniformity of the initial bending and the mechanical stability of the cantilever array for thermo-piezoelectric SPM(scanning probe microscopy) -based data storages. This nitride cantilever shows thickness uniformity less than $2\%$. Data bits of 40 nm in diameter were recorded on PMMA film. The sensitivity of the piezoelectric sensor was 0.615 fC/nm after poling the PZT layer. For high speed operation, 128${\times}$128 probe array was developed.

  • PDF

Machining Characteristics of SiC reinforced Composite by multiple diamond-coated drills (다이아몬드 피복공구에 의한 SiC 강화 복합재료의 절삭특성)

  • M. Chen;Lee, Y. M.;S. H. Yang;S. I. Jang
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.533-537
    • /
    • 2003
  • Compared to sintered polycrystalline diamond (PCD), the deposited thin film diamond has a great advantage on the fabrication of cutting tools with complex geometries such as drills. Because of high performance in high speed machining non-ferrous difficult-to-cut materials in the field of automobiles industry, aeronautics and astronautics industry, diamond-coated drills find large potentialities in commercial applications. However, the poor adhesion of the diamond film on the substrate and high surface roughness of the drill flute adversely affect the tool lift and machining quality and they become the main technical barriers for the successful development and commercialization of diamond-coated drills. In this paper, diamond thin films were deposited on the commercial WC-Co based drills by the electron aided hot filament chemical vapor deposition (EACVD). A new multiple coating technology based on changing gas pressure in different process stages was developed. The large triangular faceted diamond grains may have great contribution to the adhesive strength between the film and the substrate, and the overlapping ball like blocks consisted of nanometer sized diamond crystals may contribute much to the very low roughness of diamond film. Adhesive strength and quality of diamond film were evaluated by scanning electron microscope (SEM), atomic force microscope (AFM), Raman spectrum and drilling experiments. The ring-block tribological experiments were also conducted and the results revealed that the friction coefficient increased with the surface roughness of the diamond film. From a practical viewpoint, the cutting performances of diamond-coated drills were studied by drilling the SiC particles reinforced aluminum-matrix composite. The good adhesive strength and low surface roughness of flute were proved to be beneficial to the good chip evacuation and the decrease of thrust and consequently led to a prolonged tool lift and an improved machining quality. The wear mechanism of diamond-coated drills is the abrasive mechanical attrition.

  • PDF

Characterization of various crystal planes of beta-phase gallium oxide single crystal grown by the EFG method using multi-slit structure (다중 슬릿 구조를 이용한 EFG 법으로 성장시킨 β-Ga2O3 단결정의 다양한 결정면에 따른 특성 분석)

  • Hui-Yeon Jang;Su-Min Choi;Mi-Seon Park;Gwang-Hee Jung;Jin-Ki Kang;Tae-Kyung Lee;Hyoung-Jae Kim;Won-Jae Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • β-Ga2O3 is a material with a wide band gap of ~4.8 eV and a high breakdown-voltage of 8 MV/cm, and is attracting much attention in the field of power device applications. In addition, compared to representative WBG semiconductor materials such as SiC, GaN and Diamond, it has the advantage of enabling single crystal growth with high growth rate and low manufacturing cost [1-4]. In this study, we succeeded in growing a 10 mm thick β-Ga2O3 single crystal doped with 0.3 mol% SnO2 through the EFG (Edge-defined Film-fed Growth) method using multi-slit structure. The growth direction and growth plane were set to [010]/(010), respectively, and the growth speed was about 12 mm/h. The grown β-Ga2O3 single crystal was cut into various crystal planes (010, 001, 100, ${\bar{2}}01$) and surface processed. The processed samples were compared for characteristics according to crystal plane through analysis such as XRD, UV/VIS/NIR/Spec., Mercury Probe, AFM and Etching. This research is expected to contribute to the development of power semiconductor technology in high-voltage and high-temperature applications, and selecting a substrate with better characteristics will play an important role in improving device performance and reliability.

The Influence of the Temperature Increase on the Tribological Behavior of DLC Films by RF-PECVD (RF-PECVD로 증착된 DLC 박막의 온도 변화에 따른 트라이볼로지 특성)

  • Lee Young-Ze;Cho Yong-Kyung;Shin Yun-Ha
    • Tribology and Lubricants
    • /
    • v.22 no.3
    • /
    • pp.127-130
    • /
    • 2006
  • DLC (Diamond Like Carbon) films show very desirable surface interactions with high hardness, low friction coefficient, and good wear-resistance properties. The friction behavior of hydrogenated DLC film is dependent on tribological environment, especially surrounding temperature. In this work, the tribological behaviors of DLC (Diamond-like carbon) films, prepared by the radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) method, were studied in elevated temperatures. The ball-on-disk tests with DLC films on steel specimens were conducted at a sliding speed of 60 rpm, a load of 10N, and surrounding various temperatures of $25^{\circ}C,\;40^{\circ}C,\;55^{\circ}C\;and\;75^{\circ}C$. The results show considerable dependency of DLC tribological parameters on temperature. The friction coefficient decreased as the surrounding temperature increased. After tests the wear tracks of hydrogenated DLC film were analyzed by optical microscope, scanning electron spectroscopy (SEM) and Raman spectroscopy. The surface roughness and 3-D images of wear track were also obtained by an atomic force microscope (AFM).

DC/RF Magnetron Sputtering deposition법에 의한 $TiSi_2$ 박막의 특성연구

  • Lee, Se-Jun;Kim, Du-Soo;Sung, Gyu-Seok;Jung, Woong;Kim, Deuk-Young;Hong, Jong-Sung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.163-163
    • /
    • 1999
  • MOSFET, MESFET 그리고 MODFET는 Logic ULSIs, high speed ICs, RF MMICs 등에서 중요한 역할을 하고 있으며, 그것의 gate electrode, contact, interconnect 등의 물질로는 refractory metal을 이용한 CoSi2, MoSi2, TaSi2, PtSi2, TiSi2 등의 효과를 얻어내고 있다. 그중 TiSi2는 비저항이 가장 낮고, 열적 안정도가 좋으며 SAG process가 가능하므로 simpler alignment process, higher transconductance, lower source resistance 등의 장점을 동시에 만족시키고 있다. 최근 소자차원이 scale down 됨에 따라 TiSi2의 silicidation 과정에서 C49 TiSi2 phase(high resistivity, thermally unstable phase, larger grain size, base centered orthorhombic structure)의 출현과 그것을 제거하기 위한 노력이 큰 issue로 떠오르고 있다. 여러 연구 결과에 따르면 PAI(Pre-amorphization zimplantation), HTS(High Temperature Sputtering) process, Mo(Molybedenum) implasntation 등이 C49를 bypass시키고 C54 TiSi2 phase(lowest resistivity, thermally stable phase, smaller grain size, face centered orthorhombic structure)로의 transformation temperature를 줄일 수 있는 가장 효과적인 방법으로 제안되고 있지만, 아직 그 문제가 완전히 해결되지 않은 상태이며 C54 nucleation에 대한 physical mechanism을 밝히진 못하고 있다. 본 연구에서는 증착 시 기판온도의 변화(400~75$0^{\circ}C$)에 따라 silicon 위에 DC/RF magnetron sputtering 방식으로 Ti/Si film을 각각 제작하였다. 제작된 시료는 N2 분위기에서 30~120초 동안 500~85$0^{\circ}C$의 온도변화에 따라 RTA법으로 각각 one step annealing 하였다. 또한 Al을 cosputtering함으로써 Al impurity의 존재에 따른 영향을 동시에 고려해 보았다. 제작된 시료의 분석을 위해 phase transformation을 XRD로, microstructure를 TEM으로, surface topography는 SEM으로, surface microroughness는 AFM으로 측정하였으며 sheet resistance는 4-point probe로 측정하였다. 분석된 결과를 보면, 고온에서 제작된 박막에서의 C54 phase transformation temperature가 감소하는 것이 관측되었으며, Al impuritydmlwhswork 낮은온도에서의 C54 TiSi2 형성을 돕는다는 것을 알 수 있었다. 본 연구에서는 결론적으로, 고온에서 증착된 박막으로부터 열적으로 안정된 phase의 낮은 resistivity를 갖는 C54 TiSi2 형성을 보다 낮은 온도에서 one-step RTA를 통해 얻을 수 있다는 결과와 Al impurity가 존재함으로써 얻어지는 thermal budget의 효과, 그리고 그로부터 기대할 수 있는 여러 장점들을 보고하고자 한다.

  • PDF

The Measurement Errors of Elastic Modulus and Hardness due to the Different Indentation Speed (압입속도의 변화에 따른 탄성계수와 경도의 오차 연구)

  • Lee, Kyu-Young;Lee, Chan-Bin;Kim, Soo-In;Lee, Chang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.5
    • /
    • pp.360-364
    • /
    • 2010
  • Most research groups used two analysis methods (spectroscopy and nanotribology) to measure the mechanical properties of nano-materials: NMR (Nuclear Magnetic Resonance), IR (Infrared Spectroscopy), Raman Spectroscopy as the spectroscopy method and AFM (Atomic Force MicroScope), EFM (Electrostatic Force Microscope), KFM (Kelvin Force Microscope), Nanoindenter as the nanotribological one. Among these, the nano-indentation technique particularly has been recognized as a powerful method to measure the elastic modulus and the hardness. However, this technique are prone to considerable measurement errors with pressure conditions during measurement. In this paper, we measured the change of elastic modulus and hardness of an Al single crystal with the change of load, hold, and unload time, respectively. We found that elastic modulus and hardness significantly depend on load, hold, and unload time, etc. As the indent time was shortened, the elastic modulus value decreased while the hardness value increased. In addition, we found that elastic modulus value was more sensitive to indent load, hold, and unload time than the hardness value. We speculate that measurement errors of the elastic modulus and the hardness originate from the residual stress during indenting test. From our results, the elastic modulus was more susceptible to the residual stress than the hardness. Thus, we find that the residual stress should be controlled for the minimum measurement errors during the indenting test.