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Abstract— Two kinds of PZT cantilevers integrated
with a piezoresistor have been newly designed,
fabricated, and characterized for high speed AFM. In
first cantilever, a piezoresistor is used to sense atomic
force acting on tip, while in second cantilever, a
piezoresistor is integrated to calibrate hysteresis and
creep phenomena of the PZT cantilever. The
fabricated PZT
displacement of 0.55um/V and high

cantilevers provide high tip
resonant
frequency of 73 kHz. A new cantilever structure has
been designed to prevent electrical coupling between
sensor and PZT actuator and the proposed cantilever
shows 5 times lower coupling voltage than that of the
previous cantilever. The fabricated PZT cantilever
shows a crisp scanned image at 1mm/sec, while the
conventional piezo-tube scanner shows blurred image
even at 180um/sec. The non-linear properties of the
PZT actuator are also well calibrated using the
piezoresistive sensor for calibration,
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I. INTRODUCTION

Atomic force microscopy (AFM) has been a powerful
tool for science and technology due to its high resolution.
Despite the striking advances in the technology of AFM,
the performance is still limited by slow scan speed.
Improvement of operational speed is strongly required
for new applications such as high speed AFM, scanning
probe lithography (SPL)" and high density data storage
device”. As the scan speed is limited by the low speed of
piezo-tube of conventional AFM, the self-actuating
piezoelectric cantilever integrated with piezoelectric thin
film has been studied to improve the scan speed. Minne.
et al. developed the self-actuating ZnO cantilever
integrated with a piezoresistor for high speed AFM>®.
Lee et al. have studied the PZT force sensor for dynamic
scanning force microscopy”. Watanabe et al. have also
fabricated a cantilever with sputtered PZT film for
deflection sensor and feedback actuation in z-direction®.
We reported that the scan speed of AFM was
significantly improved using the PZT cantilever
compared to conventional piezo-tube”. However, the
reported ZnO cantilevers showed low tip displacement
due to low piezoelectric constant of ZnO film. Also, PZT
cantilevers showed process problems such as co-
integration between the silicon tip and the PZT actuator.
Additionally, the reported cantilevers with sensor and
actuator showed the serious electrical coupling between
the actuator and piezoresistor signals at high frequency
operation” and PZT actuator has inherent problems of
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Fig. 1 Device structure of the PZT cantilever integrated with
piezoresistor.

hysteresis and creep.

In this study, two kinds of piezoresistors are integrated
in the PZT cantilevers for sensing of atomic force and
calibrating of non-linear properties of PZT actuator,
respectively. Especially, a new PZT cantilever structure
is proposed to prevent the electrical coupling between
the PZT actuator and piezoresistor. The improvement of
speed using the fabricated PZT cantilever is confirmed
through AFM image and the calibration properties of the
piezoresistor are investigated by characteristics of
piczoresistor.

I1. DESIGN AND FABRICATION

Figure 1 shows the PZT cantilever integrated with
piezoresistive sensor schematically. Piezoresistor for
sensing is formed at front side of PZT capacitor to sense

atomic force acting on the tip as shown in Fig. 1(a),
while that for calibration is formed near Si substrate to
sense the deformation of the PZT cantilever as shown in
Fig. 1(b). The cantilever consists of the actuator part and
the force sensing part. The spring constant of the sensing
part was designed to be about 10 times smaller than that
of the actuating part to localize the atomic force to the
sensing part of the cantilever.

The self-actuating PZT cantilevers integrated with
piezoresistors have been fabricated as follows. AFM tip
is formed on top of n-type (100) silicon on insulator
(801) wafer. Boron was implanted at 40keV with dose of
5%10"™ cm? at piezoresistor region and with dose of
5x10" cm? at high doping region. The PZT actuator
consists of RuQ,/PZT/Pt/Ti/SiO,/Si. The 500nm-thick
PZT film was prepared by sol-gel method. The PZT
capacitor structure was patterned using inductively
coupled plasma reactive ion etching. Finally, backside
silicon was selectively removed by anisotropic etching in
aqueous KOH solution.

II1. RESULTS AND DISCUSSION

1. PZT cantilever for sensing

Figure 2 (a) shows the SEM images of a fabricated
PZT cantilever and the upper right side shows the
enlarged picture of the tip. The actuator part and the
sensing part of the cantilever are well defined. In this
study, the tip is perfectly protected by novel etching
technique”. It is also found in Fig. 2 (b) that an array
with 10 PZT cantilevers is well fabricated. Figure 3 (a),
(b) shows P-E (polarization-electric field) curve and I-E
(current density-electric field) characteristics of the PZT
capacitor after fabrication of the PZT cantilever. The P-E
curve is well saturated and is symmetrical with the
remnant polarization of 18 wC/cm®. This result shows
that the PZT capacitor is not degraded during fabrication
process of the PZT cantilever. The leakage current is
below above 10 A/cm® until 600 kV/cm that
corresponds to 30 V. Figure 5 shows the tip displacement
of the PZT actuator as a function of applied voltage
under DC bias condition. The actuator provides high tip
displacement of about 0.55um per unit applied voltage.
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Fig. 2. SEM Image of the fabricated PZT cantilever with

piezoresistor for sensing.

The actuator is well operated without breakdown until
30V and the operational range of the actuator is over
15um. This operational range is much higher than that of
the conventional atomic force microscopy. In this
cantilever, the resonant frequency is found to be 73 kHz,
about 100 times higher than conventional piezo-tube
scanner. Therefore, a significant improvement of scan
speed of AFM is expected using the PZT cantilever.

To verify major parameters that induce actuator-sensor
electrical coupling at high frequency, the electrical
analysis is accomplished using the simple equivalent
circuit shown in Fig. 5. Figure 5 (b) shows A-A’ cross
section of PZT cantilever of Fig. 5 (a). C,4and C,, are
PZT capacitance and overlap capacitance between PZT
bottom electrode and boron doped region. C,, is oxide
capacitance between the PZT bottom electrode and n-
type silicon cantilever and C; is junction capacitance
between n-type silicon cantilever and boron doped
region. This capacitor model is similar with p-type MOS
transistor PSPICE model. Figure 5 (¢) shows the B-B’
cross section of PZT cantilever of Figure 5(a}. Ry , Ppiezo
and R, are resistor of PZT bottom electrode,

piezoresistor and resistor of heavily doped region,
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Fig. 3 Electrical properties of the PZT capacitor after
fabrication of the cantilever.
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respectively.

To explore these parasitic parameter trends, the
relationship between the coupling voltage and parasitic
parameters is analyzed by utilizing PSPICE simulator.
The actual component values for the simple equivalent
circuit made from discrete components are listed in
Table 1. Although the resistance of PZT bottom electrode
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Table 1. Component values for the simple equivalent
cantilever with actuator and sensor model.
Component Component parameter value
Rp+ Resistance of p+ region 3kQ
Cpzt Capacitance of PZT 1.5nF
Tox Oxide thickness 240nm
CGSO0, CGDO Overlap capacitance 1nF/m
CJ Junction capacitance 50uF/m?
CISW Side junction capacitance 50pF/m
Ryt Resistance of bottom electrode 300Q
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Fig. 6. Coupling voltage of piezoresistor per unit voltage
applied to the PZT cantilever as a function of parasitic
capacitance at 30kHz.
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Fig. 7. Photo images of three type cantilevers to investigate
the coupling voltage between PZT dirve and piezoresistor.

is major factor to decrease the coupling signal, a
significant decrease of the resistance is difficult due to
the limitation of bottom electrode®. In this simulation,
the dependence of capacitances on coupling signal is
investigated. Figure 6 shows that the coupling voltage is
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Fig. 8. Coupling voltage between the piezoresistor and PZT
actuator as function of PZT drive frequency for sample #1, #2
and #3.
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Fig. 9. Schematic diagram of AFM system using the PZT
cantilever with piezoresistor for sensing.

significantly reduced with the decrease of both the p-n
junction capacitance (C;) and overlap capacitance (C.).
Because both capacitors are parallel connected, there are
two paths of electrical coupling at PZT cantilever of Fig.
5(a). The one electrical coupling path is related with
overlap capacitance, the other is related with junction
capacitance. To reduce the electrical coupling voltage,
both capacitances have to be reduced simultaneously. To
experimentally investigate the effect of parasitic
parameters on electrical coupling, three types of
cantilevers are fabricated as show Fig. 7. The PZT
capacitor of sample #2 is shrunk not to overlap with
heavily doped piezoresistor for decreasing overlap
capacitance (C,,) in comparison to that of sample #1. To
reduce p-n junction capacitance and overlap capacitance
simultaneously, we propose the sample #3, in which
heavily doped conduction line is replaced with Au/Ti
metal shown in Fig. 7. Figure 8 shows the electrical
coupling voltage between the piezoresistor sensor and
PZT actuator as function of PZT drive frequency. The
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Fig. 12. Characteristics of piezoresistor for calibration.

vs. PZT drive voltage

measured coupling voltage of sample #2 is a little
smaller than those of PZT cantilever with the previous
structure (sample #1). The coupling voltage of sample #3
is 5 times smaller than that of the previous structure
(sample #1). These results are well matched with the
simulation results and show that the coupling voltage can
be effectively reduced by the cantilever structure with
metal interconnection line (sample #3).

Figure 9 shows the schematic drawing of AFM system
using the fabricated PZT cantilever integrated with
piezoresistor. The piezoresistor is placed in series with a

reference resistor to form a Wheatstone bridge circuit

and is used to detect the cantilever deflection caused by
atomic force acting on the tip. Figure 10 shows AFM
images of the standard calibration sample with 10um
period and 100 nm height, which were taken by two
different operating modes. In first method, the bulk
piezo-tube scanner is used for adjusting the tip in z-
direction. Secondly, the self-actuating PZT cantilever is
used for positioning the tip in z-direction. In case of
using bulk piezo-tube scanner, the contour of the image
does not look sharp. This shows that the bandwidth of
the tube scanner limits the scanning speed of AFM. In
case of using the self-actuating PZT cantilever, we can
obtain a crisp image at high scan speed of 1mmy/sec since
the PZT cantilever has high resonant frequency of 73
kHz.

2. PZT cantilever for calibration

The PZT cantilever with pizoresistive calibration
sensor of Fig. 1 (b) is well fabricated as shown in Fig. 11.
The tip and the PZT actuator are well defined.

It is well known that the PZT piezoelectric actuator
has nonlinear properties such as hysteresis and creep
effect. These phenomena cause various distortions or
errors in the topographic AFM image, which is a set of
applied voltages on the z-actuator. The hysteresis causes
error in the dimensional measurement near the
topographic step. Also creep effect represents various
image distortions which are related to the historical
behavior depending on the path of the motion. The
calibration performance of the integrated piezoresistor
on the hysteresis of the PZT actuator is confirmed by
investigating the linearity of piezoresistive calibration
sensor. Generally, the output voltage of PSD (photo
sensitive detector) of AFM is proportional to the
deflection of AFM cantilever. Therefore, the linearity of
piezoresistive calibration sensor can be investigated by
comparing to PSD.

Figure 12 (a) shows the output signals of the
piezoresistor and PSD with respect to the voltage applied
to the PZT actuator, in which the sweep rate is 1 Hz. The
PZT actuator shows the typical hysteresis of a
piezoelectric material and the integrated piezoresistive
sensor represents an output signal similar to that of PSD.
This result explains that the voltage of the piezoresistor
is proportional to that of PSD. This is also confirmed by
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Fig. 12 (b) which shows the linear relationship between
the voltage of the piezoresistive sensor and that of PSD,
which corresponds to the deflection of the cantilever.
These results show that the non-linear properties of the
PZT actuator can be effectively calibrated by the

integrated piezoresistive sensor.

IV. CONCLUSION

Newly designed two kinds of PZT cantilevers with
piezoresistors are fabricated, and characterized to sense
atomic force acting on tip and calibrate non-linear
properties of the PZT actuator. The fabricated PZT
cantilevers provide high tip displacement of 0.55um/V
and high resonant frequency of 73 kHz. The electrical
coupling voltage is also significantly reduced by new
cantilever design. The PZT cantilever shows a crisp
scanned image at high scan speed of lmm/sec. The
piezoresistor for calibration represents linear relationship
with respect to tip displacement. Therefore, the non-
linear properties of the PZT actuator are effectively

calibrated using the piezoresistive senor.
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