• 제목/요약/키워드: High Specific Capacitance

검색결과 137건 처리시간 0.025초

Synthesis and Electrochemical Performance of Polypyrrole-Coated Iron Oxide/Carbon Nanotube Composites

  • Kim, Dae-Won;Kim, Ki-Seok;Park, Soo-Jin
    • Carbon letters
    • /
    • 제13권3호
    • /
    • pp.157-160
    • /
    • 2012
  • In this work, iron oxide ($Fe_3O_4$) nanoparticles were deposited on multi-walled carbon nanotubes (MWNTs) by a simple chemical coprecipitation method and $Fe_3O_4$-decorated MWNTs (Fe-MWNTs)/polypyrrole (PPy) nanocomposites (Fe-MWNTs/PPy) were prepared by oxidation polymerization. The effect of the PPy on the electrochemical properties of the Fe-MWNTs was investigated. The structures characteristics and surface properties of MWNTs, Fe-MWNTs, and Fe-MWNTs/PPy were characterized by X-ray diffraction and X-ray photoelectron spectroscopy, respectively. The electrochemical performances of MWNTs, Fe-MWNTs, and Fe-MWNTs/PPy were determined by cyclic voltammetry and galvanostatic charge/discharge characteristics in a 1.0 M sodium sulfite electrolyte. The results showed that the Fe-MWNTs/PPy electrode had typical pseudo-capacitive behavior and a specific capacitance significantly greater than that of the Fe-MWNT electrode, indicating an enhanced electrochemical performance of the Fe-MWNTs/PPy due to their high electrical properties.

Novel Flexible Supercapacitors Fabricated by Simple Integration of Electrodes, Binders, and Electrolytes into Glass Fibre Separators

  • Yoo, Joung Eun;Bae, Joonho
    • 전기화학회지
    • /
    • 제17권4호
    • /
    • pp.237-244
    • /
    • 2014
  • We report novel and simple structure of supercapacitors fabricated by using flexible glass fibre separators as templates. This method does not require separate electrodes, binders and high pressure/temperature to build the supercapacitor unit cells as required by the conventional technology. The supercapacitors were fabricated by drop-casting solution mixtures of carbonaceous active materials/gel electrolytes onto two sides of glass fibre separators. Two carbonaceous materials (nanoscaled activated carbons, multi-walled carbon nanotubes) were investigated as electrode materials. The electrochemical measurements reveal that the separatorbased supercapacitors using ACs successfully demonstrated significant mass specific capacitance ($22.3F\;g^{-1}$) and energy density ($9.7Wh\;kg^{-1}$), indicating this method can be useful in fabricating flexible, wearable and stretchable energy storage devices in more straightforward and cost-effective way than current technology.

Facile Fabrication of Flexible In-Plane Graphene Micro-Supercapacitor via Flash Reduction

  • Kang, Seok Hun;Kim, In Gyoo;Kim, Bit-Na;Sul, Ji Hwan;Kim, Young Sun;You, In-Kyu
    • ETRI Journal
    • /
    • 제40권2호
    • /
    • pp.275-282
    • /
    • 2018
  • Flash reduction of graphene oxide is an efficient method for producing high quality reduced graphene oxide under room temperature ambient conditions without the use of hazardous reducing agents (such as hydrazine and hydrogen iodide). The entire process is fast, low-cost, and suitable for large-scale fabrication, which makes it an attractive process for industrial manufacturing. Herein, we present a simple fabrication method for a flexible in-plane graphene micro-supercapacitor using flash light irradiation. All carbon-based, monolithic supercapacitors with in-plane geometry can be fabricated with simple flash irradiation, which occurs in only a few milliseconds. The thinness of the fabricated device makes it highly flexible and thus useful for a variety of applications, including portable and wearable electronics. The rapid flash reduction process creates a porous graphene structure with high surface area and good electrical conductivity, which ultimately results in high specific capacitance ($36.90mF\;cm^{-2}$) and good cyclic stability up to 8,000 cycles.

슈퍼커패시터용 폐면 티셔츠로부터 질소 도핑된 다공성 탄소 직물의 제조 및 전기화학 특성 평가 (Preparation and Electrochemical Characterization of Nitrogen-Doped Porous Carbon Textile from Waste Cotton T-Shirt for Supercapacitors)

  • 장형석;황아름;이병민;윤제문;최재학
    • 한국재료학회지
    • /
    • 제31권9호
    • /
    • pp.502-510
    • /
    • 2021
  • Hierarchically porous carbon materials with high nitrogen functionalities are extensively studied as high-performance supercapacitor electrode materials. In this study, nitrogen-doped porous carbon textile (N-PCT) with hierarchical pore structures is prepared as an electrode material for supercapacitors from a waste cotton T-shirt (WCT). Porous carbon textile (PCT) is first prepared from WCT by two-step heat treatment of stabilization and carbonization. The PCT is then nitrogen-doped with urea at various concentrations. The obtained N-PCT is found to have multi-modal pore structures with a high specific surface area of 1,299 m2 g-1 and large total pore volume of 1.01 cm3 g-1. The N-PCT-based electrode shows excellent electrochemical performance in a 3-electrode system, such as a specific capacitance of 235 F g-1 at 1 A g-1, excellent cycling stability of 100 % at 5 A g-1 after 1,000 cycles, and a power density of 2,500 W kg-1 at an energy density of 3.593 Wh kg-1. Thus, the prepared N-PCT can be used as an electrode material for supercapacitors.

생체전기자율반응 측정기를 이용한 조기난소부전증 환자의 피부저항변이도 연구 (1, 2, 3 상한 중심으로) (A Study of Skin Resistance Variability of POF Patients by Autonomic Bioelectric Response Recorder (Centering around 1-3 Parts))

  • 최은미;강명자;위효선
    • 대한한방부인과학회지
    • /
    • 제19권3호
    • /
    • pp.247-256
    • /
    • 2006
  • Purpose : To research the Skin Resistance Variability(SRV) of premature ovarian failure(POF) patients by Autonomic Bioelectric Response Recorder(ABR-2000 system, Meridian, Korea) and report the specific results in SRV of POF patients. Methods : We measured SRV of 17 POF Patients who came to Conmaul Oriental Medical Hospital during August 2005 ${\sim}$ July 2006 by ABR-2000 system. We analyzed the results which height of graph Part was converted into 0${\sim}$10, and the readings of Low/Normal/High. Results : The mean value of graph height on each(1, 2, 3) part is lower than normal range(4-6) in POF patients. The distribution ratio of Low/Normal/High on each(1, 2, 3) part shows that there are much more Low proportion in POF patients. Conclusion : The low graph height of POF patients on 1, 2, 3 part means that conductivity & capacitance of POF patients is low, especially on head.

  • PDF

Alternative Sample Preparation Method for Large-Area Cross-Section View Observation of Lithium Ion Battery

  • Kim, Ji-Young;Jeong, Young Woo;Cho, Hye Young;Chang, Hye Jung
    • Applied Microscopy
    • /
    • 제47권2호
    • /
    • pp.77-83
    • /
    • 2017
  • Drastic development of ubiquitous devices requires more advanced batteries with high specific capacitance and high rate capability. Large-area microstructure characterization across the stacks of cathode, electrolyte and anode might reveal the origin of the instability or degradation of batteries upon cycling charge. In this study, sample preparation methods to observe the cross-section view of the electrodes for battery in SEM and several imaging tips are reviewed. For an accurate evaluation of the microstructure, ion milling which flats the surface uniformly is recommended. Pros and cons of cross-section polishing (CP) with Ar ion and focused ion beam (FIB) with Ga ion were compared. Additionally, a modified but new cross-section milling technique utilizing precision ion polishing system (PIPS) which can be an alternative method of CP is developed. This simple approach will make the researchers have more chances to prepare decent large-area cross-section electrode for batteries.

Ruthenium Oxide Nanoparticles Electrodeposited on the Arrayed ITO Nanorods and Its Application to Supercapacitor Electrode

  • Ryu, Ilhwan;Lee, Jinho;Park, Dasom;Yim, Sanggyu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.296-296
    • /
    • 2013
  • Supercapacitor is a capacitor with extraordinarily high energy density, which basically consists of current collector, active material and electrolyte. Ruthenium oxide ($RuO_2$) is one of the most widely studied active materials due to its high specific capacitance and good electrical conductivity. In general, it is known that the coating of $RuO_2$ on nanoarchitectured current collector shows improved performance of energy storage device compared to the coating on the planar current collector. Especially, the surface structure with standing coaxial nanopillars are most desirable since it can provide direct paths for efficient charge transport along the axial paths of each nanopillars and the inter-nanopillar spacing allows easy access of electrolyte ions. However, well-known fabrication methods for metal or metal oxide nanopillars, such as the process using anodize aluminum oxide (AAO) templates, often require long and complicated nanoprocess.In this work, we developed relatively simple method fabricating indium tin oxide (ITO) nanopillars via sputtering. We also electrodeposited $RuO_2$ nanoparticles onto these ITO nanopillars and investigated its physical and electrochemical properties.

  • PDF

Incorporation of Manganese Oxide Nanoparticles Into Polyaniline Hollow Nanospheres and Its Application to Supercapacitors

  • Kwon, Hyemin;Ryu, Ilhwan;Han, Jiyoung;Yim, Sanggyu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.295-295
    • /
    • 2013
  • Supercapacitors with higher energy and power density are attracting growing attention for their wide range of potential applications such as portable electronic equipments, hybrid vehicle and cellular devices. In various classes of materials for supercapacitors, the redox pseudocapacitive materials such as conducting polymers and metal oxides have been most widely studied recently. The nanostructuring of the electrode surface has also been focused on since it can provide large surface area and consequently easy diffusion of ions in the capacitors. Among the active materials, in this work, we have used polyaniline (PANi) and manganese oxide ($MnO_2$). PANi is one of the promising electrode and active materials due to its desirable properties such as high electrochemical activity, high doping level and stability. $MnO_2$ is also widely studied material for supercapacitors since it is relatively cheap and environmentally friendly. In this work, we fabricated PANi hollow nanospheres by polymerizing aniline monomers on the polystyrene (PS) nanospheres and then dissolving the inner PS spheres. This nanostructuring of the PANi surface can provide large surface area and hence easy diffusion of electrolyte ions. We also incorporated $MnO_2$ nanoparticles into the PANi hollow nanospheres and investigated its electrochemical properties. It is expected that the combination of these two active materials with slightly different working potential windows show synergetic effects such as broader working potential range and enhanced specific capacitance.

  • PDF

Simple Technique Reducing Leakage Current for H-Bridge Converter in Transformerless Photovoltaic Generation

  • Kot, Radoslaw;Stynski, Sebastian;Stepien, Krzysztof;Zaleski, Jaroslaw;Malinowski, Mariusz
    • Journal of Power Electronics
    • /
    • 제16권1호
    • /
    • pp.153-162
    • /
    • 2016
  • Given their structural arrangement, photovoltaic (PV) modules exhibit parasitic capacitance, which creates a path for high-frequency current during zero-state switching of the converter in transformerless systems. This current has to be limited to ensure safety and electromagnetic compatibility. Many solutions that can minimize or completely avoid this phenomenon, are available. However, most of these solutions are patented because they rely on specific and often complex converter topologies. This study aims to solve this problem by introducing a solution based on a classic converter topology with an appropriate modulation technique and passive filtering. A 5.5 kW single-phase residential PV system that consists of DC-DC boost stage and DC-AC H-bridge converter is considered. Control schemes for both converter stages are presented. An overview of existing modulation techniques for H-bridge converter is provided, and a modification of hybrid modulation is proposed. A system prototype is built for the experimental verification. As shown in the study, with simple filtering and proper selection of switching states, achieving low leakage current level is possible while maintaining high converter efficiency and required energy quality.

산성 전해질 기반의 전기 이중층 커패시터용 흑연 집전체의 전기화학적 안정성 평가 (Evaluation of Electrochemical Stability of Graphite Current Collector for Electric Double Layer Capacitor Based on Acid Electrolyte)

  • 박시진;안건형
    • 한국재료학회지
    • /
    • 제31권5호
    • /
    • pp.272-277
    • /
    • 2021
  • Owing to its low cost, easy fabrication process, and good ionic properties, aqueous supercapacitors are under strong consideration as next-generation energy storage devices. However, the limitation of the current collector is its poor electrochemical stability, leading to low energy storage performance. Therefore, a reasonable design of the current collector and the acidic electrolyte is a necessary, as well as interfacial engineering to enhance the electrochemical performance. In the present study, graphite foil, with excellent electrochemical stability and good electrical properties, is suggested as a current collector of aqueous supercapacitors. This strategy results in excellent electrochemical performance, including a high specific capacitance of 215 F g-1 at a current density of 0.1 A g-1, a superior high-rate performance (104 F g-1 at a current density of 20.0 A g-1), and a remarkable cycling stability of 98 % at a current density of 10.0 A g-1 after 9,000 cycles. The superior energy storage performance is mainly ascribed to the improved ionic diffusion ability during cycling.