Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.5.272

Evaluation of Electrochemical Stability of Graphite Current Collector for Electric Double Layer Capacitor Based on Acid Electrolyte  

Park, Sijin (Department of Energy Engineering, Gyeongsang National University)
An, Geon-Hyoung (Department of Energy Engineering, Gyeongsang National University)
Publication Information
Korean Journal of Materials Research / v.31, no.5, 2021 , pp. 272-277 More about this Journal
Abstract
Owing to its low cost, easy fabrication process, and good ionic properties, aqueous supercapacitors are under strong consideration as next-generation energy storage devices. However, the limitation of the current collector is its poor electrochemical stability, leading to low energy storage performance. Therefore, a reasonable design of the current collector and the acidic electrolyte is a necessary, as well as interfacial engineering to enhance the electrochemical performance. In the present study, graphite foil, with excellent electrochemical stability and good electrical properties, is suggested as a current collector of aqueous supercapacitors. This strategy results in excellent electrochemical performance, including a high specific capacitance of 215 F g-1 at a current density of 0.1 A g-1, a superior high-rate performance (104 F g-1 at a current density of 20.0 A g-1), and a remarkable cycling stability of 98 % at a current density of 10.0 A g-1 after 9,000 cycles. The superior energy storage performance is mainly ascribed to the improved ionic diffusion ability during cycling.
Keywords
energy material; electric double layer capacitor; electrolyte; graphite current collector;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Sharma and T. S. Bhatti, Energy Convers. Manag., 51, 2901-2912 (2010).   DOI
2 Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li and L. Zhang, Int. J. Hydrogen Energy, 34, 4889 (2009).   DOI
3 J. Park and G.-H. An, Appl. Surf. Sci., 549, 149326 (2021).   DOI
4 L. Zhang, S. Yang, J. Chang, D. Zhao, J. Wang, C. Yang and B. Cao, Front. Chem., 8, 413 (2020).   DOI
5 W. Ye, H. Wang, J. Ning, Y. Zhong and Y. Hu, J. Energy Chem., 57, 219 (2021).   DOI
6 W. Qin, N. Zhou, C. Wu, M. Xie, H. Sun, Y. Guo and L. Pan, ACS Omega, 5, 3801 (2020).   DOI
7 X. Zang, C. Shen, M. Sanghadasa and L. Lin, ChemElectroChem, 6, 976 (2018).
8 N. Blomquist, T. Wells, B. Andres, J. Backstrom, S. Forsberg and H. Olin, Sci. Rep., 7, 39836 (2017).   DOI
9 G.-H. An, S. Cha and H.-J. Ahn, Appl. Surf. Sci., 478, 435 (2019).   DOI
10 L. Liu, H. Zhao and Y. Lei, Small Methods, 3, 1800341 (2018).
11 M. A. Mustapa, O. B. Yaakob, Y. M. Ahmed, C.-K. Rheem, K. K. Koh and F. A. Adnan, Renewable Sustainable Energy Rev., 77, 43 (2017).   DOI
12 A. Subramani, M. Badruzzaman, J. Oppenheimer and J. G. Jacangelo, Water Res., 45, 1907 (2011).   DOI
13 N. L. Panwar, S. C. Kaushik and S. Kothari, Renewable Sustainable Energy Rev., 15, 1513 (2011).   DOI
14 Y. Cho, S. Pak, Y.-G. Lee, J. S. Hwang, P. Giraud, G.- H. An and S. Cha, Adv. Funct. Mater., 30, 1908479 (2020).   DOI
15 Y.-G. Lee and G.-H. An, Korean J. Mater. Res., 31, 68 (2021).   DOI
16 Y.-G. Lee, H. Jang and G.-H. An, Korean J. Mater. Res., 30, 458 (2020).   DOI
17 Y.-G. Lee, J. Lee and G.-H. An, Chem. Eng. J., 414, 128916 (2021).   DOI
18 G.-H. An, Curr. Appl. Phys., 20, 605 (2020).   DOI
19 G.-H. An, Korean J. Mater. Res., 29, 505 (2019).   DOI
20 S.-I. Shin, B.-G. Lee, M.-W. Ha and G.-H. An, Korean J. Mater. Res., 29, 774 (2019).   DOI
21 B.-G. Lee, S.-I. Shin, M.-W. Ha and G.-H. An, Curr. Appl. Phys., 20, 419 (2020).   DOI
22 O. Ibukun and H. K. Jeong, New Phys.: Sae Mulli, 69, 154 (2019).   DOI
23 W. Zhang, D. Liu, H. Lin, H. Lu, J. Xu and D. Liu, Colloid. Surfece. Physicochem. Eng. Aspect., 511, 294 (2016).   DOI
24 J. Lee and G.-H. An, Appl. Surf. Sci., 539, 148290 (2021).   DOI
25 B. Pal, S. Yang, S. Ramesh, V. Thangadurai and R. Jose, Nanoscale Adv., 1, 3807 (2019).   DOI
26 G.-H. An and H.-J. Ahn, Appl. Surf. Sci., 473, 77 (2019).   DOI
27 Y.-G. Lee and G.-H. An, ACS Appl. Mater. Interfaces, 12, 41342 (2020).   DOI
28 M. Arvani, J. Keskinen, D. Lupo and M. Honkanen, J. Energy Storage, 29, 101384 (2020).   DOI
29 M. F. Y. M. Hanappi, M. Deraman, M. Suleman, N. S. M. Nor, N. E. S. Sazali, E. Hamdan, N. S. M. Tajuddin, N. H. Basri, M. R. M. Jasni and M. A. R. Othman, Funct. Mater. Lett., 10, 1750013 (2017).   DOI
30 G.-H. An, J. Hong, S. Pak, Y. Cho, S. Lee, B. Hou and S. Cha, Adv. Energy Mater., 10, 1902981 (2020).   DOI
31 G.-H. An, Appl. Surf. Sci., 530, 147220 (2020).   DOI