DOI QR코드

DOI QR Code

Novel Flexible Supercapacitors Fabricated by Simple Integration of Electrodes, Binders, and Electrolytes into Glass Fibre Separators

  • Yoo, Joung Eun (Department of Chemical Engineering, University of Texas at Austin) ;
  • Bae, Joonho (Department of Nano-physics, Gachon University)
  • Received : 2014.11.03
  • Accepted : 2014.11.19
  • Published : 2014.11.28

Abstract

We report novel and simple structure of supercapacitors fabricated by using flexible glass fibre separators as templates. This method does not require separate electrodes, binders and high pressure/temperature to build the supercapacitor unit cells as required by the conventional technology. The supercapacitors were fabricated by drop-casting solution mixtures of carbonaceous active materials/gel electrolytes onto two sides of glass fibre separators. Two carbonaceous materials (nanoscaled activated carbons, multi-walled carbon nanotubes) were investigated as electrode materials. The electrochemical measurements reveal that the separatorbased supercapacitors using ACs successfully demonstrated significant mass specific capacitance ($22.3F\;g^{-1}$) and energy density ($9.7Wh\;kg^{-1}$), indicating this method can be useful in fabricating flexible, wearable and stretchable energy storage devices in more straightforward and cost-effective way than current technology.

Keywords

References

  1. J. R. McDonough, J. W. Choi, Y. Yang, F. L. Manita, Y. Zhang Y, and Y. Cui, "Carbon nanofiber supercapacitors with large areal capacitances", Appl. Phys. Lett., 95, 243109 (2009). https://doi.org/10.1063/1.3273864
  2. P. Chen, G. Shen, S. Sukcharoenchoke, and C. Zhou, "Flexible and transparent supercapacitor based on $In_2O_3$ nanowire/carbon nanotube heterogeneous films", Appl. Phys. Lett., 94, 043113 (2009). https://doi.org/10.1063/1.3069277
  3. U. Chung, C. Elissalde, S. Mornet, M. Maglione, and C. Estournes, "Controlling internal barrier in low loss $BaTiO_3$ supercapacitors", Appl. Phys. Lett., 94, 072903 (2009). https://doi.org/10.1063/1.3076125
  4. X. Wu, L. Jiang, F. Cao, Y. Guo, and Wan, "$LiFePO_4$ Nanoparticles Embedded in a Nanoporous Carbon Matrix: Superior Cathode Material for Electrochemical Energy-Storage Devices", Adv. Mater., 21, 2710 (2009). https://doi.org/10.1002/adma.200802998
  5. K. Hung, C. Masarapu, T. Ko, and B. Wei, "Wide-temperature range operation supercapacitors from nanostructured activated carbon fabric", J. Power Sources, 193, 944 (2009). https://doi.org/10.1016/j.jpowsour.2009.01.083
  6. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, "Graphene-Based Ultracapacitors", Nano Lett., 8, 3498 (2008). https://doi.org/10.1021/nl802558y
  7. J. Bae, M. K. Song, Y. J. Park, J. M. Kim, M. Liu M, and Z. L. Wang, "Fibre super capacitors made of nanowire-fibre hybrid structures for wearable/flexible energy storage", Angew. Chem. Int. Ed., 50, 1 (2011). https://doi.org/10.1002/anie.201006633
  8. J. Bae J, Y. J. Park, M. Lee, S. N. Cha, Y. J. Choi, C. S. Lee, J. M. Kim, and Z. L. Wang, "Single-fibre-based hybridization of energy converters and storage units using Graphene as electrodes", Adv. Mater., 23, 3446 (2011). https://doi.org/10.1002/adma.201101345
  9. L. Hu, N. Liu, M. Eskilsson, G. Zheng, J. McDonough, M. Wagberg, and Cui Y, "Silicon-Conductive Nanopaper for Li-Ion Batteries", Nano Energy, 2, 138 (2013). https://doi.org/10.1016/j.nanoen.2012.08.008
  10. T. Hu, X. Sun, H. Sun, M. Yu, F. Lu, C. Liu, and J. Lian, "Flexible free-standing graphene-$TiO_2$ hybrid paper for use as lithium ion battery anode materials", Carbon, 51, 322 (2012).
  11. X. Zhang, Z. Lin, B. Chen, S. Sharma, C. P. Wong, Z. Zhang, and Y. Deng, "Solid-state, flexible, high strength paper-based supercapacitors". J. Mater. Chem., 1, 5835 (2009).
  12. S. Hu, R. Rajamani, and X. Xu, "Flexible solid-state paper based carbon nanotube supercapacitor", Appl. Phys. Lett.100, 104103 (2012). https://doi.org/10.1063/1.3691948
  13. L. Hu, W. Hui, and Y. Cui, "Printed energy storage devices by integration of electrodes and separators into single sheets of paper" Appl. Phys. Lett. 96, 183502 (2010). https://doi.org/10.1063/1.3425767
  14. D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P. Taberna, and P. Simon, "Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon", Nature Nanotech. 5, 651 (2010). https://doi.org/10.1038/nnano.2010.162
  15. A. Kiebele, M. Kaempgen, and G. Gruner, "Printed Energy and Power Storage: Batteries and Supercapacitors", Nanotech. Law Bus., 5, 7 (2008).
  16. Z. Fan, Z. Chu, F. Wang, C. Zhang, L. Chen, Y. Tang, and D. Zou, "Wire-shaped flexible dye-sensitized solar cells", Adv. Mater., 20, 592 (2008). https://doi.org/10.1002/adma.200701249
  17. A. L. M. Reddy, and S. Ramaprabhu, "Nanocrystalline metal oxides dispersed multiwalled carbon nanotubes as supercapacitor electrodes", J. Phys. Chem. C, 111, 7727 (2007). https://doi.org/10.1021/jp069006m
  18. V. L .Pushparaj, M. M. Shaijumon, A. Kumar, S. Murugesan, L. Ci, R. J. Vajtai, O. Linhardt, and P. M. Ajayan, "Flexible energy storage devices based on nanocomposite paper", Proc. Nat. Acad. Sci., 104, 13574 (2007). https://doi.org/10.1073/pnas.0706508104
  19. M. Kaempgen, C. K. Chan, J. Ma, Y. Cui, and G. Gruner "Printable thin film supercapacitors using single-walled carbon nanotubes", Nano Letters 9, 1872 (2009). https://doi.org/10.1021/nl8038579
  20. J. Kim, C. S. Lee, J. H. Han, H.W. Cho, and J. Bae J "Supercapacitors using gel electrolytes and thin multiwalled carbon nanotube films spray-deposited on ITO substrates", Electrochem. Solid-State Lett. 14, A56 (2011).
  21. Z. Chen. V. Augustyn, J. Wen, Y. Zhang, M. Shen, B. Dunn, and Y. Lu "High-performance supercapacitors based on intertwined CNT/$V_2O_5$ nanowire nanocomposites". Adv. Mater., 23, 791 (2011). https://doi.org/10.1002/adma.201003658
  22. M. Kaempgen, J. Ma, G. Gruner, G. Wee, and S. G. Mhaisalkar, "Bifunctional carbon nanotube networks for supercapacitors", Appl. Phys. Lett., 90, 264104 (2007). https://doi.org/10.1063/1.2749187
  23. J. N. Barisci, G. G. Wallace, and R. H. Baughman, "Electrochemical studies of single-wall carbon nanotubes in aqueous solutions" J. Electroanal. Chem., 488, 92 (2000). https://doi.org/10.1016/S0022-0728(00)00179-0
  24. C. Vix-Guterl, E. Frackowiak, K. Jurewicz, M. Friebe, J. Parmentier and F. Beguin, "Electrochemical energy storage in ordered porous carbon materials", Carbon, 43, 1293 (2005). https://doi.org/10.1016/j.carbon.2004.12.028
  25. D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.-L. Taberna, and P. Simon, "Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon", Nature Nanotech., 5, 651 (2010). https://doi.org/10.1038/nnano.2010.162
  26. T. Y. Kim, H. W. Lee, M., D. R. Stoller, C. W. Bielawski, R. S. Ruoff, and K. S. Suh, "High-Performance Supercapacitors Based on Poly(ionic liquid)-Modified Graphene Electrodes", ACS Nano, 5, 436 (2011). https://doi.org/10.1021/nn101968p
  27. B. G. Choi, Y. S. Huh, and W. H. Hong, "Electrochemical characterization of porous graphene film for supercapacitor electrode", Korean Chem. Eng. Res., 50, 754 (2012). https://doi.org/10.9713/kcer.2012.50.4.754
  28. C. Schuttera, C. Ramirez-Castroa, M. Oljacab, S. Passerinic, M. Wintera, and A. Balducci, "Activated Carbon, Carbon Blacks and Graphene Based Nanoplatelets as Active Materials for Electrochemical Double Layer Capacitors: A Comparative Study ", J. Electrochem. Soc. 162, A44 (2015).
  29. C.-M. Chen,Q. Zhang, C.-H. Huang,X.-C. Zhao, B.-S. Zhang, Q.-Q. Kong,M.-Z. Wang, Y.-G. Yang, R. Caia, and D. S. Su, "Macroporous 'bubble' graphene film via template-directed ordered-assembly for high rate supercapacitorsw", Chem. Commun., 48, 7149 (2012). https://doi.org/10.1039/c2cc32189k
  30. Z. Bo, W. Zhu , W. Ma , Z. Wen, X. Shuai, J. Chen, J. Yan , Z. Wang , K. Cen , and X. Feng, "Vertically Oriented Graphene Bridging Active-Layer/Current-Collector Interface for Ultrahigh Rate Supercapacitors", Adv. Mater., 25, 5799 (2013). https://doi.org/10.1002/adma.201301794
  31. S. Mallika, and R. S. Kumar, "Review on ultracapacitor-battery interface for energy management system" Intern. J. Engin. Tech., 3, 37 (2011).
  32. V. Khomenko, E. Raymundo-Pinero, and F. Beguin, "Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2V in aqueous medium", J. Power Sources, 153, 183 (2006). https://doi.org/10.1016/j.jpowsour.2005.03.210
  33. R. I. Jafri, A. K. Mishraa, S. Ramaprabhu, "Polyaniline-$MnO_2$ nanotube hybrid nanocomposite as supercapacitor electrode material in acidic electrolyte", J. Mater. Chem., 21, 17601 (2011). https://doi.org/10.1039/c1jm13191e
  34. K. H. An, W. S. Kim, Y. S. Park, Y. C. Choi, S. M. Lee, D. C. Chung, D. J. Bae, S. C. Lim, and Y. H. Lee, "Supercapacitors using single-walled carbon nanotube electrodes" Adv. Mater., 13, 497 (2001). https://doi.org/10.1002/1521-4095(200104)13:7<497::AID-ADMA497>3.0.CO;2-H