Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.9.502

Preparation and Electrochemical Characterization of Nitrogen-Doped Porous Carbon Textile from Waste Cotton T-Shirt for Supercapacitors  

Chang, Hyeong-Seok (Department of Polymer Science and Engineering, Chungnam National University)
Hwang, Ahreum (Department of Polymer Science and Engineering, Chungnam National University)
Lee, Byoung-Min (Department of Polymer Science and Engineering, Chungnam National University)
Yun, Je Moon (Division of Advanced Materials Engineering, Dong-Eui University)
Choi, Jae-Hak (Department of Polymer Science and Engineering, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.31, no.9, 2021 , pp. 502-510 More about this Journal
Abstract
Hierarchically porous carbon materials with high nitrogen functionalities are extensively studied as high-performance supercapacitor electrode materials. In this study, nitrogen-doped porous carbon textile (N-PCT) with hierarchical pore structures is prepared as an electrode material for supercapacitors from a waste cotton T-shirt (WCT). Porous carbon textile (PCT) is first prepared from WCT by two-step heat treatment of stabilization and carbonization. The PCT is then nitrogen-doped with urea at various concentrations. The obtained N-PCT is found to have multi-modal pore structures with a high specific surface area of 1,299 m2 g-1 and large total pore volume of 1.01 cm3 g-1. The N-PCT-based electrode shows excellent electrochemical performance in a 3-electrode system, such as a specific capacitance of 235 F g-1 at 1 A g-1, excellent cycling stability of 100 % at 5 A g-1 after 1,000 cycles, and a power density of 2,500 W kg-1 at an energy density of 3.593 Wh kg-1. Thus, the prepared N-PCT can be used as an electrode material for supercapacitors.
Keywords
waste cotton T-shirt; carbonization; nitrogen doping; urea; supercapacitor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. M. Lee, N. Umirov, J. Y. Lee, J. Y. Lee, B. S. Choi, S. K. Hong, S. S. Kim and J. H. Choi, Int. J. Energy Res., 45, 9530 (2021).   DOI
2 J. Gamby, P. L. Taberna, P. Simon, J. F. Fauvarque and M. Chesneau, J. Power Sources, 101, 109 (2001).   DOI
3 D. Majumdar, T. Maiyalagan and Z. Jiang, ChemElectro Chem, 6, 4343 (2019).   DOI
4 L. L. Zhang and X. S. Zhao, Chem. Soc. Rev., 38, 2520 (2009).   DOI
5 S. K. Simotwo, C. Delre and V. Kalra, ACS Appl. Mater. Interfaces, 8, 21261 (2016).   DOI
6 Y. Lu, J. Liang, S. Deng, Q. He, S. Deng, Y. Hu and D. Wang, Nano Energy, 65, 103993 (2019).   DOI
7 R. Farzana, R. Rajarao, B. R. Bhat and V. Sahajwalla, J. Ind. Eng. Chem., 65, 387 (2018).   DOI
8 B. M. Lee, V. T. Bui, H. S. Lee, S. K. Hong, H. S. Choi and J. H. Choi, Radiat. Phys. Chem., 163, 18 (2019).   DOI
9 B. Xu, D. Zheng, M. Jia, G. Cao and Y. Yang, Electrochim. Acta, 98, 176 (2013).   DOI
10 F. Nindiyasari, E. Griesshaber, T. Zimmermann, A. P. Manian, C. Randow, R. Zehbe, L. Fernandez-Diaz, A. Ziegler, C. Fleck and W. W. Schmahl, J. Compos. Mater., 50, 657 (2016).   DOI
11 X. Zhou, P. Wang, Y. Zhang, X. Zhang and Y. Jiang, ACS Sustain. Chem. Eng., 4, 5585 (2016).   DOI
12 B. M. Lee, B. S. Choi, J. Y. Lee, S. K. Hong, J. S. Lee and J. H. Choi, Carbon Lett., 31, 67 (2021).   DOI
13 D. S. Kwon, H. Y. Choi, B. M. Lee, Y. G. Jeong, D. Yang, S. T. Kim and J. H. Choi, Appl. Surf. Sci., 471, 328 (2019).   DOI
14 S. Yorgun, N. Vural and H. Demiral, Microporous Mesoporous Mat., 122, 189 (2009).   DOI
15 N. H. Phan, S. Rio, C. Faur, L. L. Coq, P. L. Cloirec and T. H. Nguyen, Carbon, 44, 2569 (2006).   DOI
16 D. S. Jeong, J. M. Yun and K. H. Kim, RSC Adv., 7, 44735 (2017).   DOI
17 C. Liu, F. Li, L. P. Ma and H. M. Cheng, Adv. Mater., 22, E28 (2010).   DOI
18 J. Libich, J. Maca, J. Vondrak, O. Cech and M. Sedlarikova, J. Energy Storage, 17, 224 (2018).   DOI
19 W. Raza, F. Ali, N. Raza, Y. Luo, K. H. Kim, J. Yang, S. Kumar, A. Mehmood and E. E. Kwon, Nano Energy, 52, 441 (2018).   DOI
20 L. Kouchachvili, W. Yaici and E. Entchev, J. Power Sources, 374, 237 (2018).   DOI
21 A. U. Agobi, H. Louis, T. O. Magu and P. M. Dass, J. Chem. Rev., 1, 19 (2019).   DOI
22 Poonam, K. Sharma, A. Arora and S. K. Tripathi, J. Energy Storage, 21, 801 (2019).   DOI
23 L. L. Zhang, Y. Gu and X. S. Zhao, J. Mater. Chem. A, 1, 9395 (2013).   DOI
24 A. Cross, A. Morel, A. Cormie, T. Hollenkamp and S. Donne, J. Power Sources, 196, 7847 (2011).   DOI
25 S. Meer, A. Kausar and T. Iqbal, Polym.-Plast. Technol. Eng., 55, 1416 (2016).   DOI
26 A. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse and D. Aurbach, J. Mater. Chem. A, 5, 12653 (2017).   DOI
27 A. C. Rodrigues, E. L. D. Silva, A. P. S. Oliveira, J. T. Matsushima, A. Cuna, J. S. Marcuzzo, E. S. Goncalves and M. R. Baldan, Mater. Today Commun., 21, 100553 (2019).   DOI
28 A. G. Pandolfo and A. F. Hollenkamp, J. Power Sources, 157, 11 (2006).   DOI
29 S. Zhou, X. Li, Z. Wang, H. Guo and W. Peng, Trans. Nonferrous Met. Soc. China, 17, 1328 (2007).   DOI
30 P. Yang and W. Mai, Nano Energy, 8, 274 (2014).   DOI
31 Z. Bi, Q. Kong, Y. Cao, G. Sun, F. Su, X. Wei, X. Li, A. Ahmad, L. Xie and C. M. Chen, J. Mater. Chem. A, 7, 16028 (2019).   DOI
32 N. M. Nor, L. L. Chung, L. K. Teong and A. R. Mohamed, J. Environ. Chem. Eng., 1, 658 (2013).   DOI
33 G. Zhao, C. Chen, D. Yu, L. Sun, C. Yang, H. Zhang, Y. Sun, F. Besenbacher and M. Yu, Nano Energy, 47, 547 (2018).   DOI
34 H. Peng, G. Ma, K. Sun, Z. Zhang, Q. Yang and Z. Lei, Electrochim. Acta, 190, 862 (2016).   DOI
35 A. G. Dumanli and A. H. Windle, J. Mater. Sci., 47, 4236 (2012).   DOI
36 Q. Abbas, R. Raza, I. Shabbir and A. G. Olabi, J. Sci., 4, 341 (2019).
37 S. L. Candelaria, B. B. Garcia, D. Liu and G. Cao, J. Mater. Chem., 22, 9884 (2012).   DOI
38 B. M. Lee, J. J. Eom, G. Y. Baek, S. K. Hong, J. P. Jeun, J. H. Choi and J. M. Yun, Cellulose, 26, 4529 (2019).   DOI
39 S. Dai, Z. Liu, B. Zhao, J. Zeng, H. Hu, Q. Zhang, D. Chen, C. Qu, D. Dang and M. Liu, J. Power Sources, 387, 43 (2018).   DOI
40 Y. Hu, H. Liu, Q. Ke and J. Wang, J. Mater. Chem. A, 2, 11753 (2014).   DOI
41 A. L. M. Reddy, A. Srivastava, S. R. Gowda, H. Gullapalli, M. Dubey and P. M. Ajayan, ACS Nano, 4, 6337 (2010).   DOI
42 B. M. Lee, H. S. Chang, J. H. Choi and S. K. Hong, Korean J. Mater. Res., 31, 264 (2021).   DOI
43 C. Liu, H. Wang, X. Zhao, H. Liu, Y. Sun, L. Tao, M. Huang, J. Shi and Z. Shi, J. Power Sources, 457, 228056 (2020).   DOI
44 Z. Yang, J. Tian, Z. Yin, C. Cui, W. Qian and F. Wei, Carbon, 141, 467 (2019).   DOI
45 B. Xu, D. Zheng, M. Jia, G. Cao and Y. Yang, Electrochim. Acta, 98, 176 (2013).   DOI
46 Y. Yu, J. Wang, J. Wang, J. Li, Y. Zhu, X. Li, X. Song and M. Ge, Cellulose, 24, 1669 (2017).   DOI
47 S. Huo, M. Liu, L. Wu, M. Liu, M. Xu, W. Ni and Y. M. Yan, J. Power Sources, 387, 81 (2018).   DOI
48 F. Gao, J. Qu, Z. Zhao, Z. Wang and J. Qiu, Electrochim. Acta, 190, 1134 (2016).   DOI
49 S. Saha, P. Samanta, N. C. Murmu and T. Kuila, J. Energy Storage, 17, 181 (2018).   DOI
50 Y. Deng, Y. Xie, K. Zou and X. Ji, J. Mater. Chem. A, 4, 1144 (2016).   DOI
51 L. Z. Fan, T. T. Chen, W. L. Song, X. Li and S. Zhang, Sci. Rep., 5, 15388 (2015).   DOI
52 H. J. Kim, C. M. Lee, K. Dazen, C. D. Delhom, Y. Liu, J. E. Rodgers, A. D. French and S. H. Kim, Cellulose, 24, 2385 (2017).   DOI
53 H. G. Jo, D. Y. Shin and H. J. Ahn, Korean J. Mater. Res., 29, 167 (2019).   DOI
54 T. Kaplas and P. Kuzhir, Nanoscale Res. Lett., 12, 121 (2017).   DOI
55 M. Fujishige, I. Yoshida, Y. Toya, Y. Banba, K. Oshida, Y. Tanaka, P. Dulyaseree, W. Wongwiriyapan and K. Takeuchi, J. Environ. Chem. Eng., 5, 1801 (2017).   DOI
56 E. Y. L. Teo, L. Muniandy, E. P. Ng, F. Adam, A. R. Mohamed, R. Jose and K. F. Chong, Electrochim. Acta, 192, 110 (2016).   DOI