• Title/Summary/Keyword: High Performance Control

Search Result 6,158, Processing Time 0.032 seconds

A Heuristic Rule for the Performance Improvement in Time Domain Passivity Control of Haptic Interfaces

  • Kim, Yoon-Sang;Blake Hannaford
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.3
    • /
    • pp.212-216
    • /
    • 2002
  • A practical issue is studied to improve the performance of a new energy based method of achieving stable, high performance haptic interface control. The issue is related to resetting the amount of energy accumulated in the Passivity Observer for faster operation. A heuristic method is derived and experimentally tested for the resetting and it is shown to help the PC to operate sooner when the system gets active. Experimental results are presented for the “Excalibur” haptic device.

Sensorless control of a SPMSM for driving cooling fans (냉각 팬 구동을 위한 SPMSM의 센서리스 제어)

  • Kim, Sang-Hoon;Kim, Ji-Min
    • Journal of Industrial Technology
    • /
    • v.34
    • /
    • pp.15-20
    • /
    • 2014
  • Recently, PMSMs(Permanent Magnet Synchronous Motors) have become increasingly popular in various high-performance motor drive applications. However, the high-performance drive of PMSMs needs a position sensor such as a resolver, which increases not only the price of the system but also reduces the system reliability. This paper is on the implementation of sensorless control of a SPMSM, which drives a fan for cooling in appliances. In this paper, the rotor position for high-performance drive of a SPMSM is derived from back electromotive force (EMF) information proportional to the rotor speed. Also, the initial rotor position information for start-up is estimated from a saturation phenomenon of inductance. The validity of the proposed sensorless drives was confirmed by the experiment on the SPMSM drive systems for cooling fans of refrigerators and laptop computers.

  • PDF

Analysis of tension properties at roll changing process of a high speed printing machine (고속인쇄기 롤 교체과정의 장력특성 해석)

  • Lee B.J.;Kim S.H.;Kang C.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.281-282
    • /
    • 2006
  • Tension control performance is very important in high-speed printing machine. One of the major factors that effect to tension control performance is the process of roll changing. Even if the turret arm moves during roll changing process and the span length of the unwinding system varies, it is customary to neglect it in motion and tension control and to consider it as a disturbance. In this paper, its effect is modeled nonlinearly and compared with linear model, and an effect of an infeeder dancer is analyzed under the condition with no unwinder dancer. We verify the performance of the proposed method via simulation in the high-speed printing machine.

  • PDF

Performance Improvement of High Speed Operation for Sensorless based Synchronous Machine (회전자 위치센서 없는 동기전동기의 고속 운전 성능 개선)

  • Jung, Young-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.6
    • /
    • pp.439-444
    • /
    • 2018
  • The performance improvement in the high speed region for the sensorless based synchronous machine drive is discussed in the paper. Conventional dynamic overmodulation method in the vector controlled AC driver requires some calculation of maximum amplitude of the applying voltage vector to limit its amplitude, which leads to increase the calculation time of microprocessor. For low performance microprocessor, this might be impossible to complete the control loop within limited control time. Thus, to reduce the calculation time, the constantly limited amplitude for applying voltage vector is tried in this paper to drive sensorless based synchronous motor. Certainly, there exists some errors in amplitude and phase angle between inverter voltage and calculating voltage in the sensorless algorithm. But, this errors are too small to prevent the high speed sensorless operation within overmodulation region. The validities of the proposed method is proved by the experimental results.

High speed wide fan-in designs using clock controlled dual keeper domino logic circuits

  • Angeline, A. Anita;Bhaaskaran, V.S. Kanchana
    • ETRI Journal
    • /
    • v.41 no.3
    • /
    • pp.383-395
    • /
    • 2019
  • Clock Controlled Dual keeper Domino logic structures (CCDD_1 and CCDD_2) for achieving a high-speed performance with low power consumption and a good noise margin are proposed in this paper. The keeper control circuit comprises an additional PMOS keeper transistor controlled by the clock and foot node voltage. This control mechanism offers abrupt conditional control of the keeper circuit and reduces the contention current, leading to high-speed performance. The keeper transistor arrangement also reduces the loop gain associated with the feedback circuitry. Hence, the circuits offer less delay variability. The design and simulation of various wide fan-in designs using 180 nm CMOS technology validates the proposed CCDD_1 and CCDD_2 designs, offering an increased speed performance of 7.2% and 8.5%, respectively, over a conventional domino logic structure. The noise gain margin analysis proves good robustness of the CCDD structures when compared with a conventional domino logic circuit configuration. A Monte Carlo simulation for 2,000 runs under statistical process variations demonstrates that the proposed CCDD circuits offer a significantly reduced delay variability factor.

High Performance of Induction Motor Drive with HAI Controller (HAI 제어기에 의한 유도전동기 드라이브의 고성능 제어)

  • Nam, Su-Myeong;Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.4
    • /
    • pp.154-157
    • /
    • 2006
  • This paper is proposed hybrid artificial intelligent(HAI) controller for high performance of induction motor drive. The design..of this algorithm based on fuzzy-neural network(FNN) controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive FNN controller is evaluated by analysis for various operating conditions. The results of experiment prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

A Study on the Speed Control of BLDC Motor Using the Feedforward Compensation (전향보상을 이용한 BLDC 모터의 속도제어에 관한 연구)

  • Park K.H.;Kim T.S.;Kim K.H.;Hyun D.S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.663-666
    • /
    • 2003
  • This paper presents a speed controller method based on the disturbance torque observer of high performance brushless DC (BLDC) motor drives. In case of the speed control of robot arms and tracking applications with lower stiffness, we cannot design the speed controller gain to be very large from tile viewpoint of the system stability. Thus, the feedforward compensator using disturbance torque observer was proposed. This method can improve the speed characteristic without increasing the speed controller gain. The enhanced speed control performance can be achieved and the speed response against the disturbance torque can be Improved for high-performance BLDC motor drive systems in which the bandwidth of tile speed controller cannot be made large enough. Consequently, speed control for high-performance BLDC motor drives become improved. The simulation results for BLDC motor drive systems confirm the validity of the proposed method.

  • PDF

Indoor Mobile Localization System and Stabilization of Localization Performance using Pre-filtering

  • Ko, Sang-Il;Choi, Jong-Suk;Kim, Byoung-Hoon
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.204-213
    • /
    • 2008
  • In this paper, we present the practical application of an Unscented Kalman Filter (UKF) for an Indoor Mobile Localization System using ultrasonic sensors. It is true that many kinds of localization techniques have been researched for several years in order to contribute to the realization of a ubiquitous system; particularly, such a ubiquitous system needs a high degree of accuracy to be practical and efficient. Unfortunately, a number of localization systems for indoor space do not have sufficient accuracy to establish any special task such as precise position control of a moving target even though they require comparatively high developmental cost. Therefore, we developed an Indoor Mobile Localization System having high localization performance; specifically, the Unscented Kalman Filter is applied for improving the localization accuracy. In addition, we also present the additive filter named 'Pre-filtering' to compensate the performance of the estimation algorithm. Pre-filtering has been developed to overcome negative effects from unexpected external noise so that localization through the Unscented Kalman Filter has come to be stable. Moreover, we tried to demonstrate the performance comparison of the Unscented Kalman Filter and another estimation algorithm, such as the Unscented Particle Filter (UPF), through simulation for our system.

A PMSM Motion Control System with Direct Torque Control (직접토크제어에 의한 PMSM의 위치제어 시스템)

  • 김남훈
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.615-619
    • /
    • 2000
  • This paper presents an implementation of digital motion control system of Surface Permanent-Magnet Synchronous Motor(SPMSM) vector drives with a direct torque control(DTC) using the 16bit DSP TMS320F240 The DSP controller enable enhanced real time algorithm and cost-effective design of intelligent control for motors which can be yield enhanced operation fewer system components lower system cost increased efficiency and high performance The system presented are stator flux and torque observer of stator flux feedback model that inputs are current and voltage sensing of motor terminal and angle for a low speed operating area two hysteresis band controllers an optimal switching look-up table and IGBT voltage source inverter by using fully integrated control software. The developed control system are shown a good motion control response characteristic results and high performance features using 1.0Kw purposed servo drive SPMSM.

  • PDF

Speed and efficiency control of induction motors via asymptotic decoupling

  • Kim, Gyu-Sik;Ha, In-Joong;Ko, Myoung-Sam;Kim, Dong-Il;Kim, Jeom-Geun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.1041-1046
    • /
    • 1989
  • In this paper, we attempt to control induction motors with high power efficiency as well as high dynamic performance by utilizing the recently developed theories: singular perturbation technique and noninteracting feedback control. Our controller does not need the transformation between a d-q synchronously rotating frame and a x-y stator-fixed frame. It is computationally quite simple. Furthermore, it does not depend on the rotor resistance. To illuminate the practical significance of our results, we present simulation and experimental results as well as mathematical performance analysis.

  • PDF