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Indoor Mobile Localization System and Stabilization of Localization

Performance using Pre-filtering

Sang-il Ko, Jong-suk Choi*, and Byoung-hoon Kim

Abstract: In this paper, we present the practical application of an Unscented Kalman Filter
(UKF) for an Indoor Mobile Localization System using ultrasonic sensors. It is true that many
kinds of localization techniques have been researched for several years in order to contribute to
the realization of a ubiquitous system; particularly, such a ubiquitous system needs a high degree
of accuracy to be practical and efficient. Unfortunately, a number of localization systems for
indoor space do not have sufficient accuracy to establish any special task such as precise position
control of a moving target even though they require comparatively high developmental cost.
Therefore, we developed an Indoor Mobile Localization System having high localization
performance; specifically, the Unscented Kalman Filter is applied for improving the localization
accuracy. In addition, we also present the additive filter named ‘Pre-filtering’ to compensate the
performance of the estimation algorithm. Pre-filtering has been developed to overcome negative
effects from unexpected external noise so that localization through the Unscented Kalman Filter
has come to be stable. Moreover, we tried to demonstrate the performance comparison of the
Unscented Kalman Filter and another estimation algorithm, such as the Unscented Particle Filter

(UPF), through simulation for our system.

Keywords: Indoor GPS, Pre-filtering, Tone Detection, UKF, UPF.

1. INTRODUCTION

To obtain well-localized physical position data,
many systems have addressed the problems of
automatic location measurement. Because each
approach solves a slightly different problem or
supports different applications, they vary in many
parameters, such as the physical phenomena used for
location determination, the form factor of the sensing
apparatus, power requirements, infrastructure versus
portable elements, and resolution in time and space.
Among these kinds of automatic localization systems,
localizing techniques using ultrasound have been
actively researched because ultrasound has a number
of merits such as low cost and relative easiness of
application;  nevertheless, ultrasound is  still
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considered as a low-guaranteed sensor since it is too
sensitive to be used for precise localization. Active
Bat uses ultrasound in order to perform time-of-flight
lateration for calculating the 3-D position of a “Bat”,
which can be worn on a person or object [1]. Active
Bat is accurate to 9 cm; however, it requires a vast
amount of infrastructure. That is, receivers need to be
placed in a square grid 1.2 meters apart and connected
by a network of cables. As a result, this level of
infrastructure is infeasible for the system we require.
In addition, Active Badge Location Systems, which
consist of a cellular proximity system that use diffuse
infrared technology, have difficulty in locations with
fluorescent lighting or direct sunlight because of the
spurious infrared emissions these light sources
generate [2]. One of the representative indoor
localization models is the Cricket of MIT. It is similar
to Active Bat in that it uses ultrasound as a basis for
time-of-flight lateration; on the other hand, it requires
fewer infrastructures than Active Bat. It employs the
Extended Kalman Filter (EKF) in order to enhance its
localization performance. The Cricket has the position
estimation accuracy of 10 cm [3,4]. Nevertheless, the
Cricket is considered to be a relatively accurate
localization system when compared with other
localization techniques. However, it still does not have
reliable accuracy of positioning for mobile objects
when it comes to obtaining the position data of a
dynamic target. There would be several causes that
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would detract from the otherwise outstanding
performance of the Cricket; for instance, either the
structural defects of hardware or the problems related
to software architecture might affect the accuracy of
localization. The momentous factors to cause such an
unsatisfactory accuracy could be the method of
approximation of EKF; because the EKF uses the first
order terms of the Taylor series expansion of the
nonlinear functions, it often introduces large errors in
the estimated statistics of the posterior distributions of
the states [5]. Moreover, although the EKF is a widely
used filtering strategy, it has led to a general
consensus that it is difficult to implement and to tune,
and only reliable for systems, which are almost linear
on the time scale of the update intervals [6]. Therefore,
we have decided to apply a more advanced estimation
algorithm to our system than EKF in order to allow
our indoor mobile localization system to be superior
in the performance of Cricket. Furthermore, besides
these indoor positioning systems before mentioned,
there is another indoor positioning system, named
‘StarLITE’, which offers a new concept for ubiquitous
robotic space (URS). StarLITE, which is composed of
two infrared beacon modules attached on the ceiling
of a space and an image sensor equipped on top of a
mobile robot, has the robustness of location data and
its accuracy as well as the ability to operate not
depending on illumination condition, which is not the
case for most vision-based approaches [7].

As the first step of our research, we carried out a
study to determine which estimation algorithm would
be the most fitting for our indoor mobile localization
system. Above all, we decided that examining the
efficiency as well as appropriateness of the estimation
algorithm for our system would be the most important
step of our research. For this reason, we investigated
advanced  estimation  algorithms, and then
accomplished simulation testing for verifying which
algorithm has better performance and suitableness; in
this research step, we compared Unscented Kalman
Filter (UKF) with Unscented Particle Filter (UPF). As
a result of the simulation, UKF was determined to be
most suitable for our system even though UPF is
generally considered as the even better algorithm;
because UPF is a compound algorithm of the particle
filter and UKF proposal generation [5]. The second
step of our research was to perform a practical
implementation of UKF into our system; consequently,
we could certificate that localization through UKF
was remarkably improved over the accuracy of
Cricket. The Unscented Kalman Filter can be
considered as a compensation algorithm for
overcoming effects due to noise factors; that is, these
noise factors are memorized and used to estimate the
most reliable position. However, in cases that effect
from noise exceeds the maximum boundary of noise
that is initially defined, the outcome of the estimation

algorithm has a huge possibility of divergence of
localization; as a result of such a divergence, it would
take too much time to carry out stable localization.
This divergence phenomenon is truly attributed to the
fact that there would be unexpected external noise,
multi-path problems of ultrasound, and unknown
effects due to the physical characteristics of
ultrasound while measurement/sensing task for
localization is performed. To cope with such an
unstableness of localization, we presented the
beforehand filter algorithm named Pre-filtering, which
helps UKF to be more guaranteed and robust on rough
impulse noise.

This paper is composed of 5 Sections. Section 1
introduces the overall content of this paper. Section 2
compares the Unscented Kalman Filter with the
Unscented Particle Filter, and validates which
algorithm is efficient and proper. Section 3 practically
implements the Unscented Kalman Filter into our
indoor mobile localization system, and certifies its
performance through localization results. Section 4
introduces the basic concept of Pre-filtering and its
practical application. Section 5 provides a conclusion
to this paper.

2. COMPARISON BETWEEN UNSCENTED
KALMAN FILTER (UKF) AND UNSCENTED
PARTICLE FILTER (UPF)

2.1. Introduction of indoor GPS and its configuration
We developed an indoor mobile localization system,
named ‘Indoor GPS’ [8]. Fig. 1 is a main control
module with an ultrasonic receiver (left) and an
ultrasonic transmitter (right), respectively. Every
module has a DSP chip for realizing outstanding
performance. Our system uses two kinds of ultrasonic
frequencies, 40kHz & 25kHz, so that ‘Indoor GPS’
can achieve faster measurement time of ultrasonic
sources from beacons than when just one frequency is
used for the localization. In the latter case, the
ultrasonic sources of 4 beacons need to be transmitted
successively in order to avoid interference between
their ultrasounds. As a result, more elapsed time for
processing in this case is required without doubt. On

Fig. 1. Indoor GPS developed in KIST.
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the other hand, we can save time for acquiring
distance data through transmitting two different
ultrasonic frequencies simultaneously.

The Indoor GPS adopts a method of ‘Tone
Detection” when distinguishing two  different
frequencies. Tone Detection allows the Indoor GPS to
be less dependent on the angle of US transmission so
that the Indoor GPS can make it possible for the
localization area to be wider. We analyzed ultrasonic
sensor noise pattern of 40kHz and 25kHz in order to
certify improvement of independency on the angle of
ultrasonic transmission. We measured the time-of-
flight lateration according to the change of distance, 0
~ 5m, and rotational angle, 0 ~ 90°, as in Fig. 2. We
calculated RMSE values of each ultrasonic frequency
based on absolute position data like Tables 1 and 2.
From the result of noise pattern analysis, we could

q ]

US Receiver

US Transmitter

Fig. 2. Measurement setup for analyzing sensor noise
pattern.

Table 1. Distance measurement RMSE [mm] of 40

kHz.
Im 2m 3m 4m Sm
0° | 29.00 | 41.00 | 21.00 | 25.00 | 15.00
20° | 18.00 | 28.00 | 26.00 | 22.00 | 23.00
40° | 20.00 | 28.00 | 23.00 | 25.00 | 24.00
60° | 16.00 | 17.00 | 30.00 | 22.00 | 22.00
90° | 34.00 | 28.00 | 34.00 X X

Table 2. Distance measurement RMSE [mm] of 25

kHz
Im 2m 3m 4m Sm
0° | 38.00 | 39.00 | 34.00 | 47.00 | 38.00
20° | 49.00 | 36.00 | 28.00 | 60.00 | 51.00
40° | 46.00 | 49.00 | 39.00 | 45.00 | 40.00
60° | 45.00 | 53.00 | 41.00 | 43.00 | 36.00
90° | 39.00 | 34.00 | 34.00 | 58.00 | 19.00

certify that maximum sensor noises of 40kHz and
25kHz are within 41.0mm and 60.0mm respectively;
furthermore, the average sensor noises of 40kHz and
25kHz are 30mm and 42mm separately. Consequently,
it is proven that sensor noise pattern is very regular
regardless of alteration of angle and distance.

2.2. Strategy for applying estimation algorithm

The previous model of Indoor GPS has a
localization performance that is within +80mm of
RMSE for static objects; because, it did use not any
estimation algorithm but the Newton-method to get
the 3-D position data from time-of-flight lateration.
In contrast, the current version of Indoor GPS
makes use of an estimation algorithm for enhancing
localization performance. The name of the estimation
algorithm applied to Indoor GPS is the Unscented
Kalman Filter. As broadly known, the EKF is a
minimum mean-square-error (MMSE) estimator based
on the Taylor series expansion of nonlinear functions
like process and observation models; in addition, it
has been most generally used for indoor localization
or navigation systems. However, it often introduces
large errors in the estimated statistics of the posterior
distributions of the states because the EKF only uses
the first order terms of the Taylor series expansion of
the nonlinear functions. This defect is evident when
the effects of the higher order terms of the Taylor
series expansion become significant and sometimes
lead to divergence of the filter. These defects of the
EKF can be complemented by approximating the
distribution of the state random variable instead of
approximating the non-linear process and observation
models. The approximation using distribution of the
state random variable is a basic strategy of the
Unscented Kalman Filter. The UKF is an advanced
application of the scaled unscented transformation;
that is, it is a recursive minimum mean-square-error
(RMMSE) estimation to propagate the sigma points
through the state equation to obtain some high order
information, in addition to the first order
approximation. The UKF leads to more accurate
results than the EKF, and in particular it generates
much better estimates of the covariance of the states.
Unlike the EKF, it uses the true nonlinear models and
rather approximates the distribution of the state
random variable. Although UKF is considered as a
better estimation algorithm than EKF, the
computational time of the Unscented Kalman filter is
much greater than the computational time of the
extended Kalman filter [9]; furthermore, it is
practically true that the Unscented Kalman Filter has a
slightly better performance than the Extended Kalman
Filter. Nevertheless, even though there has already
been a previous application model of UKF for robot
position determination which integrates the robot’s
position and orientation based on an inertial sensor
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and odometry using UKF [10], we tried to apply UKF
as an estimation algorithm to our indoor mobile
localization system only using ultrasonic sensing as
another application model for the purpose of
reconfirming that UKF could also contribute to
improve the localization performance of the indoor
localization system.

2.3. Simulation of UKF and UPF and its results
Before adopting UKF as an estimation algorithm
applied to our system, we made an effort to utilize the
Unscented Particle Filter for the performance
enhancement of our localization system, Indoor GPS.
The Unscented Particle Filter (UPF) is a new filter
that results from using a UKF for proposal
distribution generation within a particle filter
framework. That is, the Unscented Particle Filter takes
advantage of UKF as well as of Particle Filter;
resultantly, UPF is generally regarded as an advanced
estimation algorithm superior to UKF. However, we
could not ensure that UPF would demonstrate
relatively better performance than UKF since the
performance of UPF is totally dependent on the
accuracy of the sensor. For this reason, we have
decided to carry out a simulation test in order to
determine a more suitable estimation algorithm for
our system, First of all, we chose ellipsoidal motion as

Y-axis(cm)

Start Point

Section 1 (60 cm)
(105, 215)

Section 2

\
', Section 6

Section 3 Section §

(45, 135) Section 4 (60 cm) O =0.25 radisec?

a = 10 cmisec®

X-axis(cm)

Fig. 3. Virtual motion trajectory for simulation.

Table 3. The condition of simulation.

Total Localization Step 300steps
Sample Time 100mm sec.
Translational Acceleration 10cm/sec?
Angular Velocity 0.25rad/sec’
Start point (x, y) (1050, 2150)mm
X 10mm
Process Noise Y 10mm
Z Imm
Measurement Noise +30mm for all beacons

our simulation scenario because ellipsoidal motion is
so complicated and severe that we can exactly test the
performance of a simulated estimation algorithm; that
is, the more complicated the motion is, the better the
performance test is. The trajectory of ellipsoidal
motion is composed of 6 sections; sections 1 and 4 are
translational motion with changing acceleration, on
the other hand, sections 2, 3, 5, and 6 are circular
motion with changing angular acceleration as shown
in Fig. 3 and Table 3.

Fig. 4 is the simulation result of ellipsoidal motion
for demonstrating the difference of localization
performance of UKF and UPF; the estimation locus of
UKF is red-lined pattern, and the one of UPF is blue-
lined pattern. As shown in Fig. 5, there is not a huge
difference of localization performance between UKF
and UPF; however, the localization through UKF is
slightly better than the one through UPF even though
UPF is generally a more advanced algorithm than
UKF. As a result of the simulation, we could certify

X[em]

Fig. 4. Simulation result of ellipsoidal motion.
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Mean Error (cm)
UKF 2.4787
UPF 2.5125

Fig. 5. Mean error of UKF and UPF.
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that UPF is not always superior to UKF in case that
sensor value, which is used for re-sampling in UPF
framework, is not perfectly guaranteed; that is, there
exits noise elements in sensor value. Furthermore,
UKF can be thought of as a more suitable algorithm
for localization than UPF since UPF requires higher
computational cost than UKF. Consequently, we have
decided to apply the more practical UKF to our indoor
mobile localization system.

3. UKF IMPLEMENTATION AND
LOCALIZATION RESULT

3.1. The unscented Kalman filter (UKF) and its
implementation
The Unscented Kalman Filter (UKF) as shown in
Algorithm 1 is a straightforward application of the
scaled unscented transformation to recursive
minimum mean-square-error (RMMSE) estimation
(Julier and Uhlmann 1997). We applied the Unscented
Kalman Filter to Indoor GPS in order to not only
enhance the localization performance of Indoor GPS
but also make the localization algorithm applied to the
general indoor localization system to be more
sophisticated. We designed our systems on the basis of
the Position-Velocity (PV) modeling as well as the
Position-Velocity-Acceleration (PVA) modeling since
position, velocity, and acceleration are the interested
elements; moreover, it is easy to define these
parameters as state variables of our system’s dynamic
equation. Therefore, we set the state variables of the
dynamic equation as a mobile object’s position,
velocity, and acceleration.
Algorithm 1: The Unscented Kalman Filter (UKF)

Define States:

X, : States

Y, : Measurements

A :Scaling parameter

K; :Kalman gain

O : State noise covariance

R : Measurement noise covariace

1. Initialize with:
Xy = Elx]
Py = E[(xo — Xp)(x0 — %) ]

X§ =Ex“1=[x 0 of

B 0 0
P =E[(x -xH(x8 -xH)T1=10 0 0
0 0 R

2. Procedure:
For time k do
Generate sigma points:

i1 =X % £y (n, + DB ]

Time update:

X1 = K-> Xk-1)

2n, )
REDY W Xikr
i=0

2n,
= = T
TRED) Wi (ik/kar = Xkt WA k1 — Xk sk
i=0
Virk-1 =X X51)

2n,
REDY Wi(m))’ffk/k—l
i=0

Measurement update equations:

2n,
_ - T
P =2, Wi Wik = Yirea Wi se—1 = Viri—1]
=0

2n,
- .
Py = 2 W Wagit = Farkr Wiasit = Feraa]
i=0

_ 1
Ky = kayk A ViV
X =X k1 Y KWk = Yiese1)
T
B = Fer — Ky B3, K
End for

3.2. Performance comparison with the previous indoor
GPS through localization test for static position
Above all, in order to certify the improvement of
localization performance of Indoor GPS through
comparing the current version of Indoor GPS using
UKF with the previous version of Indoor GPS using
Newton-method, we performed localization task for
static object on which the main control module with
ultrasound receiver is mounted. In the experimental
environment as shown in Fig. 6, we carried out a real

US Receiver

X

3m

Fig. 6. Experimental dimension and configuration. '
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Fig. 7. Localization result for static position.

Table 4. RMSE of localization result for static

position.
Absolute Position Value | RMSE of
Number coordinate
X Y Z [mm]

1 0000 | 0000 | 0610 | 13.281377
2 0000 1000 | 0610 | 12.628899
3 0000 | 2000 | 0610 | 14.236698
4 0000 | 3000 | 0610 | 14.074974
5 1000 | 0000 | 0610 | 13.853569
6 1000 1000 | 0610 | 12.169404
7 1000 | 2000 | 0610 | 13.533700
8 1000 | 3000 | 0610 | 20.891701
9 2000 | 0000 | 0610 | 14.797277
10 2000 1000 | 0610 | 12.561878
11 2000 | 2000 | 0610 | 12.104473
12 2000 | 3000 | 0610 | 20.125955
13 3000 | 0000 | 0610 | 29.406081
14 3000 1000 | 0610 | 14.585087
15 3000 | 2000 | 0610 { 17.092725
17 1500 1500 | 0610 | 16.790702

localization test on 17 static positions.

As indicated in Fig. 7 and Table 4, it is proven that
UKF plays an important role in improving the
localization accuracy of Indoor GPS; accordingly, the
accuracy of localization is within about +20mm
except for the 13th position’s localization. In the case
of the 13th position, there seemed to be some definite
interference causes, such as multi-path effect, harsh
external sound noise, etc. In addition, there might be
poorer state of US transmission and reception between
modules due to manual arrangement of every US
beacons’ transmitter angle. When compared with the
localization performance of previous Indoor GPS,

which has about £ 80mm of localization accuracy, the
current Indoor GPS are shown to be a much more
accurate localization system.

3.3. Localization test for dynamic object and perfor-
mance analysis

The next experiment for evaluating the performance
of Indoor GPS is to perform localization for the
dynamic target of circular motion. We set up
experimental configuration as indicated in Fig. 8. The
main control module of Indoor GPS is mounted on the
rod of a circular motion system, and can be moved
and fixed freely so that the radius of circular motion
can vary; minutely speaking, the radius of circular
motion is the distance from the center of circular
motion to the ultrasonic receiver of the main control
module. We accomplished the localization test with
altering radius (500mm~1500mm) and angular
velocity (0.1~0.4 rad/sec) of the circular motion
system.

As shown in Table 5 and Fig. 9, we get RMSE
(Root-Mean-Square-Error) corresponding to 200 steps
against the absolute coordinate data based on a
trajectory of our circular motion system; we could
certify the accuracy of localization because circular
motion is within about 50mm under the condition that
the radius is shorter than 1000mm, and angular
velocity is slower than 0.2 rad/sec.

In addition, as given in Fig. 10, it is certified that
the accuracy of localization comes to be degraded

Fig. 8. Experimental setup for dynamic target.

Table 5. RMSE [mm] of localization through UKF
and Newton-Method for dynamic target.

® 0.1 (rad/sec.) 0.2 (rad/sec.)
m UKF | NM. | UKF | NM.
500mm 25.54 | 203.23 | 29.12 | 357.1
1000mm 31.57 | 412,71 | 50.25 | 222.4
1500mm 42.52 | 158.56 | 75.63 ] 290.2

® 0.3 (rad/sec.) 0.4 (rad/sec.)
m UKF | NM. | UKF | NM.
500mm | 41.181 | 339.3 | 62.86 | 335.4
1000mm 9553 | 226.71 | 120.2 | 249.5
1500mm 130.85 | 132.72 | 197.0 | 136.2
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Fig. 9. RMSE [mm] of UKF and Newton-Method for
dynamic target.

when angular velocity increases. The gravest reason
of accuracy degradation related to the increase of
angular velocity is the fact that sampling time for
localization is too slow to estimate the position of
moving target with high angular velocity. The average
sampling time of Indoor GPS is about 250mm sec
while localization task is performed. The reason why
the elapsed time for progressing one localization step
is about 250mm sec is that wireless communication is
used for communication between a personal computer
and the main control module mounted on the rod of
the circular motion system.

On the one hand, the sampling time of 250mm
second is enough to perform localization task at slow
angular velocity. On the other hand, it is occasionally
hard for this sampling time to precisely localize a
moving target with high angular velocity since the
estimation algorithm needs basically even more

m

N
ol 1

x ind®

(a) ®=0.1 rad/sec.

1

) 3 3 E E =} E] ' ET ES
< e

(c) ® = 0.3 rad/sec. (d) ® = 0.4 rad/sec.

5
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(e) ® =0.5 rad/sec.

Fig. 10. Localization result for dynamic target of
circular motion (® = 0.1 ~ 05 rad/sec).

prediction and update steps in order to attain
estimation as exact as possible whenever the motion
speed increase. We concluded that the accuracy in the
harsh motion condition such as fast angular velocity
(0.4rad/sec) and maximum radius of motion
(I1500mm) may become better if the wireless
communication is replaced with wired communi-
cation; that is, much more prediction and update steps
of estimation algorithm could be accomplished in the
case that the sampling time comes to be shortened.

3.4. Some issues regarding the kidnapped state

We’ve tested the performance of our proposed
indoor positioning system under the condition of the
kidnapped state through compulsory covering one
beacon which was transmitting ultrasonic burst. As a
result, the positioning result of receiver had been
diverged. In addition, it took large amount of time for
receiver to get correct position data through the
process of convergence. It is a very natural
phenomenon that divergence appears when any
kidnapped state occurs because UFK needs at least
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four distance data from beacons to receiver. Therefore,
we can control programmatically the scheme of
localization in order to overcome this negative effect.
That is, when it comes to the condition that such a
kidnapped state occurred, we can realize localization
of receiver only using three distance data through
Newton-method instead of UKF until four distance
data successfully appear; however, we still have a
limited condition that only one distance data is
kidnapped among a total of four distance data. Of
course, the accuracy of localization using three
distance data through the Newton-method is not
reliable. However, it is effective to prevent
localization from going to divergence even though it
is insufficient.

4. STABILIZATION THROUGH PRE-
FILTERING

4.1. Instability phenomenon of localization

There were occasionally receptions of unstable
ultrasonic sources when we obtained the 3
dimensional position data either of a moving target or
of static object. This comes from the possibility that
an ultrasonic receiver does not get a pure ultrasonic
source from an ultrasonic transmitter but rather an
unstable or polluted ultrasonic source affected by
multi-paths or unexpected external inaudible sound.
Consistently, we could experience that an impulsive
error happened while localization of a moving object
was carried out. Such an impulsive error causes the
locus of localization not only to be separated from the
expected position, but also sometimes to be divergent;
accordingly, the performance of localization comes to
be degraded.

4.2. The Pre-filtering

Therefore, we constructed an additional filter
algorithm named ‘Pre-filtering’ as shown in Algorithm
2 in order to overcome the instability phenomenon of
localization through removal of such unstable and
unreliable ultrasonic sources.

Algorithm 2: The Pre-filtering
Define States:

X, :Position States = [x, i Zk]]r

Vi :Velocity States = [Vox Vi Vorll”

A, :Acceleration States = [Az Ay As]]l”
T : Sampling Time

X ,f : Position States for pre-filtering at k step
P P _PqT
=[xk Yk Zk]
: Next Measurements
_ T
- [dnext/O dnext/l dnext/2 dnext/3]

h

where d is a real distance data from i'

next /i

beacon to receiver.

o; : the root-mean-square-error of measurement
with a connection of i beacon.

1. Get the position states of K™ step for pre-filtering
using the updated states by UKF at N step:

X{ = X, +V,*ST + %*Ak* T¢* Ty in PVA mode
xf = x, +V,*Tg in PV mode

2. Find distance values from receivers to 4 beacons
using the position states through step 1:

DO =k -0 +(F -0 +(2} -Zp)°

Dl= &b -0+ -2+ -7,

D2 =P - X, 2 +(F - 02 + (2 - Z,)?

D3=Jxf -X3)2 + (6 V32 + (2 -Z,)°

1.e., DO is a distance from receiver to 0™ beacon.

Where the 4 beacons’ positions are the following.
Beacon 0= (0, 0, Zy)
Beacon 1=(0, Y, Z))
Beacon 2 = (Xz, 0, Zz)
Beacon 3= (X3, Yg, Z3)
in rectangular coordinate (X, y, z)

3. Validate the next measurement data:
if DO—5"0) <d,py 0 <DO+5" 0,
then d,,., o is valid.

4.If all measurements are valid, execute UKF
localization of k+1th step using the next
measurements. If not, the next measurements
are filtered. Then, postpone UKF localization of
k+1th step until next measurements are valid.

The basic procedure of ‘Pre-filtering’ is as follows.
First, calculate the next position coordinate using the
estimated result of pre-step through UKF. Second, get
four distance data from 4 beacons to receiver using a
position coordinate acquired from the first step. These
distance data are criteria for wvalidating next
measurements; that is, the result of step 2 is a mean
value of normally distributed population of
measurements. Third, determine the validity of the
next measurements. The Pre-filtering does not
perform its function for continuous harsh noise since
divergence problem occurs when sensor values are
continually examined by Pre-filtering. When the harsh
external noise occurs continually, it is thought of as
the situation of localization failure because such an
environment affected by continuous harsh noise
makes it impossible for Indoor GPS to carry out
localization successfully.
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4.3. Experiment for validating the effect of Pre-
filtering and its results
For substantiating the performance of Pre-filtering
when unreliable uitrasonic source happens, we forced
the measurement value due to Oth beacon’s ultrasonic
source to be zero at the 50th, 100th, and 150th step
when the condition of circular motion is that angular
velocity is 0.3 rad/sec and radius is 1000mm; in this
condition, the RMSE of localization is 95.53mm from
Table 5. As shown in (a) of Fig. 11, we can confirm
that the performance of UKF localization is
deteriorated when the Pre-filtering does not operate.
On the other side, operation of Pre-filtering makes
the UKF localization more stable and reliable as
shown in (b) of Fig. 11. For a more practical test, we
made an external ultrasound noise generator as
indicated in Fig. 12. The external ultrasound noise
generator plays a role in interfering real ultrasound
sources from 4 ultrasound transmitters. The external
ultrasonic noise generator was triggered to fire
ultrasound 10times for localization without Pre-
filtering and 2 times for localization with Pre-filtering
during 1 cycle of circular motion of which the
condition is that angular velocity is 0.2rad/sec and
radius is 1000mm; in this condition, the RMSE of
localization is 50.25mm from Table 5. As portrayed in
Fig. 13, we can also certify that Pre-filtering helps the
Unscented Kalman Filter overcome bad effects due to
abrupt external noise; accordingly, Pre-filtering
contributes to the stabilization of localization through

M
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(a) without Pre-filtering.  (b) with Pre-filtering.

Fig. 11. Pre-filtering test - (1).
(o = 0.3rad/sec, radius = 1000mm)

Fig. 12. External ultrasound noise generator.

(a) without Pre-filtering.  (b) with Pre-filtering.

Fig. 13. Pre-filtering test - (2).
(o = 0.2rad/sec, radius = 1000mm)

S. CONCLUSION

Several kinds of indoor localization systems have
been developed and researched for many years.
However, they have failed to realize precise
localization performance sufficient to satisfy the
requirement of localization accuracy for ubiquitous
computing. Therefore, we have developed an accurate
and reliable indoor mobile localization system using
Unscented Kalman Filter (UKF). Furthermore, we
certified that the Unscented Particle Filter (UPF) is
not always a better estimation algorithm than the
Unscented Kalman Filter (UKF) through simulation
test. It is proven that UPF is not proper for a system
using sensor value including noise factors.
Consequently, since there are noise factors in sensor
value, we adopted UKF as an estimation algorithm for
localization so that we could accomplish the
improvement of localization performance. Also, it is
certified that Indoor GPS of KIST is superior to any
other indoor localization system using ultrasound.

We found out that instability phenomenon happens
when any external harsh noise occurs. In this case,
localization through UKF comes to be unstable and as
a result the performance is degraded; moreover, the
failure of localization occasionally occurs. Therefore,
we have presented an effective filter algorithm named
Pre-filtering, which helps the UKF overcome severe
disturbance for sensor measurement. Nevertheless,
Pre-filtering cannot overcome continuous exterral
noise in order to avoid divergence problem. Therefore,
the development of a new algorithm for overcoming
such a continuous external noise must be carried out
as a future work in order to realize eventually
ubiquitous computing.
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