• Title/Summary/Keyword: High Output Current

Search Result 1,479, Processing Time 0.039 seconds

Input Series-Output Parallel Connected Converter Configuration for High Voltage Power Conversion Applications

  • Kim, Jung-Won;You, J.S.;Cho, B.H.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.201-205
    • /
    • 1998
  • In this paper, the charge control with the input voltage feed forward is proposed for the input series-output parallel connected converter configuration for high voltage power conversion applications. This control scheme accomplishes the output current sharing for the output-parallel connected modules as well as the input voltage sharing for the input-series connected modules for all operating conditions including the transients. It also offers the robustness for the component value mismatches among the modules.

  • PDF

High Speed Serial Link Transmitter Using 4-PAM Signaling (4-PAM signaling을 이용한 high speed serial link transmitter)

  • Jeong, Ji-Kyung;Lee, Jeong-Jun;Burm, Jin-Wook;Jeong, Young-Han
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.11
    • /
    • pp.84-91
    • /
    • 2009
  • A high speed serial link transmitter using multi-level signaling is proposed. To achieve high data rate m high speed serial link, 4-pulse amplitude modulation (PAM) is used. By transmitting 2 bit data in each symbol time, high speed data transmission, two times than binary signaling, is achieved. The transmitter transmits current-mode output instead of voltage-mode output Current-mode output is much faster than voltage-mode output, so higher data transmission is available by increasing switching speed of driver. $2^5-1$ pseudo-random bit sequence (PRBS) generator is contained to perform built-in self test (BIST). The 4-PAM transmitter is designed in Dongbu HiTek $0.18{\mu}m$ CMOS technology and achieves 8 Gb/s, 160 mV of eye height with 1.8 V supply voltage. The transmitter consumes only 98 mW for 8 Gb/s transmission.

Novel Zero-Voltage and Zero-Current-Switching (ZVZCS) Full Bridge PWM Converter with a Low Output Current Ripple (낮은 인덕터 맥동전류를 가지는 새로운 영전압 영전류 스위칭 풀 브릿지 DC/DC 컨버터)

  • Baek, J.W.;Cho, J.G.;Yoo, D.W.;Song, D.I.;Rim, G.H.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2204-2206
    • /
    • 1997
  • A novel zero voltage and zero current switching (ZVZCS) full bridge (FB) PWM converter with a low output current ripple is proposed. The proposed circuit improve the demerits of the previously presented ZVBCS-FB-PWM converters[5-8] such as use of lossy components or additional active switches. A simple auxiliary circuit which includes neither lossy components nor active switches provides ZVZCS conditions to primary switches, ZVS for leading-leg switches and ZCS for lagging-leg switches. In addition, this proposed circuit reduces a output current ripple considerably. Many advantages including simple circuit topology, high efficiency, low cost and low current ripple make the new converter attractive far high power (> 1kW) applications.

  • PDF

Low Threshold Current Density and High Efficiency Surface-Emitting Lasers with a Periodic Gain Active Structure

  • Park, Hyo-Hoon;Yoo, Byueng-Su
    • ETRI Journal
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 1995
  • We have achieved very low threshold current densities with high light output powers for InGaAs/ GaAs surface-emitting lasers using a periodic gain active structure in which three quantum wells are inserted in two-wavelength-thick (2${\lambda}$ ) cavity. Air-post type devices with a diameter of 20~40${\mu}m$ exhibit a threshold current density of 380~410$A/cm^2$. Output power for a 40${\mu}m$ diameter device reaches over 11 mW. A simple theoretical calculation of the threshold and power performances indicates that the periodic gain structure has an advantage in achieving low threshold current density mainly due to the high coupling efficiency between gain medium and optical field. The deterioration of power, expected from the long cavity length of $2{\lambda}$, is negligible.

  • PDF

Switched discrete sliding mode control for ZCS series rosonant AC to DC converter (영전류 스위칭 방식의 직렬 공진형 AC/DC 컨버터를 위한 전환모드 이산 슬라이딩 제어)

  • 문건우;이정훈;이대식;윤명중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1219-1226
    • /
    • 1993
  • A buck-boost zero current switched(ZCS) series resonant AC to DC converter for the DC output voltage regulation together with high power factor is proposed. The proposed single phase AC to DC converter enables a zero current switching operation of all the power devices allowing the circuit to operate at high swtiching frequencies and high power levels. A dynamic model for this Ac to DC converter is developed and an analysis for the internal operational characteristics is explored. Based on this analysis, a switched discrete sliding mode control(SDSMC) technique is investigated and its advantages over the other types of current control techniques are discussed. With the proposed control technique, the unity power factor without a current overshoot and a wide range of output voltage can be obtained.

  • PDF

Output Power Control of Permanent Magnet Wind Power Generator with Space Voltage Vector Current Control Strategy (공관전압벡터 전류제어기법을 이용한 영구자석형 풍력발전기의 출력제어)

  • Choi, Jong-Seog;Kim, Si-Kyung
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.361-364
    • /
    • 2000
  • In this study, the system which can make the generator's output voltage more stable by using the inverter in terms of PWM method, is designed It is one of the method reducing velocity of the wind in the process of the wind power generation. Thus, in this system, it is necessary to use a excellent current control inverter. So pulse with modulation method with a high-speed switching element is introduced to control the output current. And also, in order to get a fast response when the standard current generated by the vector control algorithm is supplied with the generator, the output control system with the fast response character and the best current control character is suggested. In this way, the result from the introduction of the control system is that a response character to the changable velocity of the wind is excellent, causing the remarkable reduction of the percentage of the harmonic and the outstanding stability of the variation of the output voltage.

  • PDF

Interleaved ZVS DC/DC Converter with Balanced Input Capacitor Voltages for High-voltage Applications

  • Lin, Bor-Ren;Chiang, Huann-Keng;Wang, Shang-Lun
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.661-670
    • /
    • 2014
  • A new DC/DC converter with zero voltage switching is proposed for applications with high input voltage and high load current. The proposed converter has two circuit modules that share load current and power rating. Interleaved pulse-width modulation (PWM) is adopted to generate switch control signals. Thus, ripple currents are reduced at the input and output sides. For high-voltage applications, each circuit module includes two half-bridge legs that are connected in series to reduce switch voltage rating to $V_{in}/2$. These legs are controlled with the use of asymmetric PWM. To reduce the current rating of rectifier diodes and share load current for high-load-current applications, two center-tapped rectifiers are adopted in each circuit module. The primary windings of two transformers are connected in series at the high voltage side to balance output inductor currents. Two series capacitors are adopted at the AC terminals of the two half-bridge legs to balance the two input capacitor voltages. The resonant behavior of the inductance and capacitance at the transition interval enable MOSFETs to be switched on under zero voltage switching. The circuit configuration, system characteristics, and design are discussed in detail. Experiments based on a laboratory prototype are conducted to verify the effectiveness of the proposed converter.

Power Supply for Induction Heating using High Frequency Twin Resonant Inverter (TWIN RESONANT 방식을 이용한 고주파 공진형 유도가열 전원장치)

  • Kwon, Soon-Kurl;Park, Gil-Tae;Kim, Yo-Hee;Jeo, Ki-Yeon;Yoo, Dong-Wook
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1108-1113
    • /
    • 1992
  • In this paper, the high frequency twin resonant inverter using MOSFET is presented. The output control is excellent and the EMI noise is reduced, because the output appear as the vector sum of current in each unit inverter. The output voltage and the output current of the inverter are controlled by PLL. In this paper, the principle of the twin resonant method is described. And computer simulations and experimental results are shown.

  • PDF

A Study on Design and Implementation of the Tesla Coil using Semiconductor Device (반도체 소자를 이용한 테슬라 코일의 설계 및 제작)

  • Kim, Young-Sun;Kim, Dong-Jin;Lee, Ki-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1571-1576
    • /
    • 2016
  • A Tesla coil is an electrical resonant transformer circuit invented by Nikola Tesla in 1891. It is used to produce high-voltage, low-current, high frequency alternating-current electricity. Tesla coil can generate a long streamer with several million volts of electricity as a high voltage device. It is basically consists of a voltage transformer, high voltage capacitor, spark gap, primary coil, secondary coil and toroid. It is difficult to appear in the output size of the streamer is controlled by the spark gap. The general decision method of the length of streamer is to display the electric output in accordance with the design specifications in initial development plan. Design specifications and the electric output is determined by the application of facilities. In this paper the spark gap is replaced with periodic switching semiconductor device to control output voltage easily in order to apply overvoltage protective circuit due to a secondary coil and a performance test. In these days, their main use is for entertainment and educational displays of the museum, although small coils are still used as leak detectors for high vacuum systems.

Influence of the Thin-Film Ag Electrode Deposition Thickness on the Current Characteristics of a CVD Diamond Radiation Detector

  • Ban, Chae-Min;Lee, Chul-Yong;Jun, Byung-Hyuk
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.4
    • /
    • pp.131-136
    • /
    • 2018
  • Background: We investigated the current characteristics of a thin-film Ag electrode on a chemical vapor deposition (CVD) diamond. The CVD diamond is widely recognized as a radiation detection material because of its high tolerance against high radiation, stable response to various dose rates, and good sensitivity. Additionally, thin-film Ag has been widely used as an electrode with high electrical conductivity. Materials and Methods: Considering these properties, the thin-film Ag electrode was deposited onto CVD diamonds with varied deposition thicknesses (${\fallingdotseq}50/98/152/257nm$); subsequently, the surface thickness, surface roughness, leakage current, and photo-current were characterized. Results and Discussion: The leakage current was found to be very low, and the photo-current output signal was observed as stable for a deposited film thickness of 98 nm; at this thickness, a uniform and constant surface roughness of the deposited thin-film Ag electrode were obtained. Conclusion: We found that a CVD diamond radiation detector with a thin-film Ag electrode deposition thickness close to 100 nm exhibited minimal leakage current and yielded a highly stable output signal.