• Title/Summary/Keyword: High Membrane Voltage

Search Result 172, Processing Time 0.025 seconds

A Study on the Biofouling Control in Membrane Processes Using High Voltage Impulse (고전압 임펄스를 적용한 막분리 공정에서의 생물막 오염 제어에 관한 연구)

  • Lee, Ju-Hun;Kim, Jun-Young;Yi, Chin-Woo;Lee, June-Ho;Chang, In-Soung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.10
    • /
    • pp.67-75
    • /
    • 2011
  • Although membrane technologies are widely applied to the water and wastewater treatment processes, strategy for the control of membrane biofouling is strongly required. In this study, a possibility of control of membrane biofouling using HVI(High Voltage Impulse) was verified based on the inactivation of microorganisms by the HVI. The HVI system was consisted of power supply, voltage amplifier, impulse generator and disinfection chamber and the model microorganism was E. coli. When 15[kV/cm] of electric fields was applied to the E. coli solution, inactivation of the microorganism was found. A possibility of the control of membrane biofouling using HVI was verified with experiments of membrane filtration with and without exposure of the HVI to biomass solution. Another membrane filtration experiments with the contaminated membranes by E. coli solution were carried out and indicate that the HVI could be used as an alternative method for membrane biofouling control. A series of simulation of the electric fields between electrodes and microorganisms was carried out for the visualization of the disinfection that showed where the electric fields are formed.

Stress Analysis Using Finite Element Modeling of a Novel RF Microelectromechanical System Shunt Switch Designed on Quartz Substrate for Low-voltage Applications

  • Singh, Tejinder;Khaira, Navjot K.;Sengar, Jitendra S.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.5
    • /
    • pp.225-230
    • /
    • 2013
  • This paper presents a novel shunt radio frequency microelectromechanical system switch on a quartz substrate with stiff ribs around the membrane. The buckling effects in the switch membrane and stiction problem are the primary concerns with RF MEMS switches. These effects can be reduced by the proposed design approach due to the stiffness of the ribs around the membrane. A lower mass of the beam and a reduction in the squeeze film damping is achieved due to the slots and holes in the membrane, which further aid in attaining high switching speeds. The proposed switch is optimized to operate in the k-band, which results in a high isolation of -40 dB and low insertion loss of -0.047 dB at 21 GHz, with a low actuation voltage of only 14.6 V needed for the operation the switch. The membrane does not bend with this membrane design approach. Finite element modeling is used to analyze the stress and pull-in voltage.

A Polysilicon Field Effect Transistor Pressure Sensor of Thin Nitride Membrane Choking Effect of Right After Turn-on for Stress Sensitivity Improvement (스트레스 감도 향상을 위한 턴 온 직후의 조름 효과를 이용한 얇은 질화막 폴리실리콘 전계 효과 트랜지스터 압력센서)

  • Jung, Hanyung;Lee, Junghoon
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.114-121
    • /
    • 2014
  • We report a polysilicon active area membrane field effect transistor (PSAFET) pressure sensor for low stress deflection of membrane. The PSAFET was produced in conventional FET semiconductor fabrication and backside wet etching. The PSAFET located at the front side measured pressure change using 300 nm thin-nitride membrane when a membrane was slightly strained by the small deflection of membrane shape from backside with any physical force. The PSAFET showed high sensitivity around threshold voltage, because threshold voltage variation was composed of fractional function form in sensitivity equation of current variation. When gate voltage was biased close to threshold voltage, a fractional function form had infinite value at $V_{tn}$, which increased the current variation of sensitivity. Threshold voltage effect was dominant right after the PSAFET was turned on. Narrow transistor channel established by small current flow was choked because electron could barely cross drain-source electrodes. When gate voltage was far from threshold voltage, threshold voltage effect converged to zero in fractional form of threshold voltage variations and drain current change was mostly determined by mobility changes. As the PSAFET fabrication was compatible with a polysilicon FET in CMOS fabrication, it could be adapted in low pressure sensor and bio molecular sensor.

Sterilization Experiment by High-Voltage Pulsed Electric Fields (고전압 전기장에 의한 살균실험)

  • Kang, Sung-Mi;Park, Su-Ji;Kim, Woo-Jin;Chang, In-Sung;Lee, June-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2211-2213
    • /
    • 2005
  • Recently, the membrane technology has actively been applied to make generating water because the convention; chemical treatment technology for purifying water has caused second environmental pollution. In spite of its ecological advantages, this membrane technology has some drawbacks such as ease of membrane contamination, efficiency and running cost. The purpose of this research is reduction of membrane contamination by applying high voltage pulsed electric field to the water prior to its penetrating membrane.

  • PDF

Development of Fabrication Technique of Highly Ordered Nano-sized Pore Arrays using Thin Film Aluminum (박막 알루미늄을 이용한 규칙적으로 정렬된 나노급 미세기공 어레이 제조기술 개발)

  • Lee, Jae-Hong;Kim, Chang-Kyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.8
    • /
    • pp.708-713
    • /
    • 2005
  • An alumina membrane with nano-sized pore array by anodic oxidation using the thin film aluminum deposited on silicon wafer was fabricated. It Is important that the sample prepared by metal deposition method has a flat aluminum surface and a good adhesion between the silicon wafer and the thin film aluminum. The oxidation time was controlled by observation of current variation. While the oxalic acid with 0.2 M was used for low voltage anodization under 100 V, the chromic acid with 0.1 M was used for high voltage anodization over 100 V. The nano-sized pores with diameter of $60\~120$ nm was obtained by low voltage anodization of $40\~80$ V and those of $200\~300$ nm was obtained by high voltage anodization of $140\~200$ V. The pore widening process was employed for obtaining the one-channel with flat surface because the pores of the alumina membrane prepared by the fixed voltage method shows the structure of two-channel with rough surface. Finally, the sample was immersed to the phosphoric acid with 0.1 M concentration to etching the barrier layer.

Durability Evaluation of PEMFC Electrode Using Oxygen as Cathode Gas (PEMFC Cathode 산소 조건에서 전극 촉매 내구성 평가)

  • Oh, Sohyeong;Lim, Daehyeon;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.11-15
    • /
    • 2021
  • In this study, we tried to develop a method of accelerated degradation of the electrode by simply using a electronic loader without using a potentiostat to evaluate the durability of the electrode catalyst. To this end, the durability of the electrode was evaluated by repeating the stepwise voltage change using the self-generated voltage by introducing oxygen without introducing nitrogen into the cathode. For accurate electrode durability evaluation, that is, in order not to deteriorate the polymer membrane, the high voltage was lowered to 0.9 V in stepwise voltage change and the relative humidity was 100% to suppress degradation of the polymer membrane due to radicals. After 30,000 cycles (50 hours) of voltage change, the electrode active area decreased by 41.4%. It was confirmed that the electrode was deteriorated, but the polymer membrane was not deteriorated, that there was no increase in hydrogen permeability, no decrease in membrane thickness, and no increase in HFR(High Frequency Resistance).

Voltage-Dependent Inactivation of Calcium Currents in the Mouse Eggs

  • Park, Young-Geun;Yang, Young-Seon;Yum, Myung-Kul;Hong, Seong-Geun
    • The Korean Journal of Physiology
    • /
    • v.25 no.2
    • /
    • pp.125-131
    • /
    • 1991
  • Inactivation properties of Ca current in the unfertilized eggs of mouse were studied by using the whole cell voltage clamp technique and single microelectrode voltage clamp technique. Membrane potential was held at -80 mV and step depolarization was applied from -50 mV to 50 mV for $200{\sim}500\;ms$. Peak of inward Ca currents was $-2{\sim}-4\;nA$ at a membrane Potentials from -20 mV to 0 mV and outward currents were not observed within the membrane voltage range studied $(-50{\sim}50\;mV)$. Inward currents were fully inactivated within 200 ms after the onset of step depolarization. As the membrane became depolarized, time constant of inactivation (${\tau}$) was decreased but remained around $20{\sim}30\;ms$ beyond 10 mV. When $Ca^{2+}$ was used as a charge earlier, inactivation of inward $Ca^{2+}$ current also occured and time course of inactivation was similar to that of $Ca^{2+}$ currents as charge carrier. In the bathing solution containing high potassium $(131\;mM\;K^+)$, process of inactivation was not changed except a parallel decrease of value for the entire range of membrane potential. Steady-state inactivation of the $current(h_{\infty})$ obtained from the double pulse experiment showed the voltage-dependent change. These results suggested that inactivation of Ca currents in the unfertilized eggs of mouse was voltage-dependent.

  • PDF

A Novel Stiff Membrane Seesaw Type RF Microelectromechanical System DC Contact Switch on Quartz Substrate

  • Khaira, Navjot K.;Singh, Tejinder;Sengar, Jitendra S.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.3
    • /
    • pp.116-120
    • /
    • 2013
  • This paper proposes a novel RF MEMS dc-contact switch with stiff membrane on a quartz substrate. The uniqueness of this work lies in the utilization of a seesaw mechanism to restore the movable part to its rest position. The switching action is done by using separate pull-down and pull-up electrodes, and hence operation of the switch does not rely on the elastic recovery force of the membrane. One of the main problems faced by electrostatically actuated MEMS switches is the high operational voltages, which results from bending of the membrane, due to internal stress gradient. This is resolved by using a stiff and thick membrane. This membrane consists of flexible meanders, for easy movement between the two states. The device operates with an actuation voltage of 6.43 V, an insertion loss of -0.047 dB and isolation of -51.82 dB at 2 GHz.

Computation of Beam Stress and RF Performance of a Thin Film Based Q-Band Optimized RF MEMS Switch

  • Singh, Tejinder
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.4
    • /
    • pp.173-178
    • /
    • 2015
  • In lieu of the excellent radio frequency (RF) performance of microelectromechanical system ( MEMS) switches, these micro switches need higher actuation voltage for their operation. This requirement is secondary to concerns over the swtiches’ reliability. This paper reports high reliability operation of RF MEMS switches with low voltage requirements. The proposed switch is optimised to perform in the Q-band, which results in actuation voltage of just 16.4 V. The mechanical stress gradient in the thin micro membrane is computed by simulating von Mises stress in a multi-physics environment that results in 90.4 MPa stress. The computed spring constant for the membrane is 3.02 N/m. The switch results in excellent RF performance with simulated isolation of above 38 dB, insertion loss of less than 0.35 dB and return loss of above 30 dB in the Q-band.

Hydrogen Production from Water Electrolysis Driven by High Membrane Voltage of Reverse Electrodialysis

  • Han, Ji-Hyung;Kim, Hanki;Hwang, Kyo-Sik;Jeong, Namjo;Kim, Chan-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.302-312
    • /
    • 2019
  • The voltage produced from the salinity gradient in reverse electrodialysis (RED) increases proportionally with the number of cell pairs of alternating cation and anion exchange membranes. Large-scale RED systems consisting of hundreds of cell pairs exhibit high voltage of more than 10 V, which is sufficient to utilize water electrolysis as the electrode reaction even though there is no specific strategy for minimizing the overpotential of water electrolysis. Moreover, hydrogen gas can be simultaneously obtained as surplus energy from the electrochemical reduction of water at the cathode if the RED system is equipped with proper venting and collecting facilities. Therefore, RED-driven water electrolysis system can be a promising solution not only for sustainable electric power but also for eco-friendly hydrogen production with high purity without $CO_2$ emission. The RED system in this study includes a high membrane voltage from more than 50 cells, neutral-pH water as the electrolyte, and an artificial NaCl solution as the feed water, which are more universal, economical, and eco-friendly conditions than previous studies on RED with hydrogen production. We measure the amount of hydrogen produced at maximum power of the RED system using a batch-type electrode chamber with a gas bag and evaluate the interrelation between the electric power and hydrogen energy with varied cell pairs. A hydrogen production rate of $1.1{\times}10^{-4}mol\;cm^{-2}h^{-1}$ is obtained, which is larger than previously reported values for RED system with simultaneous hydrogen production.